Displaying all 3 publications

Abstract:
Sort:
  1. Mohd-Padil H, Mohd-Adnan A, Gabaldón T
    Mol Biol Evol, 2013 Apr;30(4):894-905.
    PMID: 23258311 DOI: 10.1093/molbev/mss325
    Transferrin is a protein super-family involved in iron transport, a central process in cellular homeostasis. Throughout the evolution of vertebrates, transferrin members have diversified into distinct subfamilies including serotransferrin, ovotransferrin, lactoferrin, melanotransferrin, the inhibitor of carbonic anhydrase, pacifastin, and the major yolk protein in sea urchin. Previous phylogenetic analyses have established the branching order of the diverse transferrin subfamilies but were mostly focused on the transferrin repertoire present in mammals. Here, we conduct a comprehensive phylogenetic analysis of transferrin protein sequences in sequenced vertebrates, placing a special focus on the less-studied nonmammalian vertebrates. Our analyses uncover a novel transferrin clade present across fish, sauropsid, and amphibian genomes but strikingly absent from mammals. Our reconstructed scenario implies that this novel class emerged through a duplication event at the vertebrate ancestor, and that it was subsequently lost in the lineage leading to mammals. We detect footprints of accelerated evolution following the duplication event, which suggest positive selection and early functional divergence of this novel clade. Interestingly, the loss of this novel class of transferrin in mammals coincided with the divergence by duplication of lactoferrin and serotransferrin in this lineage. Altogether, our results provide novel insights on the evolution of iron-binding proteins in the various vertebrate groups.
    Matched MeSH terms: Transferrin/chemistry
  2. Choudhury H, Pandey M, Chin PX, Phang YL, Cheah JY, Ooi SC, et al.
    Drug Deliv Transl Res, 2018 10;8(5):1545-1563.
    PMID: 29916012 DOI: 10.1007/s13346-018-0552-2
    Treatment of glioblastoma multiforme (GBM) is a predominant challenge in chemotherapy due to the existence of blood-brain barrier (BBB) which restricts delivery of chemotherapeutic agents to the brain together with the problem of drug penetration through hard parenchyma of the GBM. With the structural and mechanistic elucidation of the BBB under both physiological and pathological conditions, it is now viable to target central nervous system (CNS) disorders utilizing the presence of transferrin (Tf) receptors (TfRs). However, overexpression of these TfRs on the GBM cell surface can also help to avoid restrictions of GBM cells to deliver chemotherapeutic agents within the tumor. Therefore, targeting of TfR-mediated delivery could counteract drug delivery issues in GBM and create a delivery system that could cross the BBB effectively to utilize ligand-conjugated drug complexes through receptor-mediated transcytosis. Hence, approach towards successful delivery of antitumor agents to the gliomas has been making possible through targeting these overexpressed TfRs within the CNS and glioma cells. This review article presents a thorough analysis of current understanding on Tf-conjugated nanocarriers as efficient drug delivery system.
    Matched MeSH terms: Transferrin/chemistry
  3. Tan DM, Fu JY, Wong FS, Er HM, Chen YS, Nesaretnam K
    Nanomedicine (Lond), 2017 Oct;12(20):2487-2502.
    PMID: 28972460 DOI: 10.2217/nnm-2017-0182
    AIM: To develop 6-O-palmitoyl-ascorbic acid-based niosomes targeted to transferrin receptor for intravenous administration of tocotrienols (T3) in breast cancer.

    MATERIALS & METHODS: Niosomes were prepared using film hydration and ultrasonication methods. Transferrin was coupled to the surface of niosomes via chemical linker. Nanovesicles were characterized for size, zeta potential, morphology, stability and biological efficacy.

    RESULTS: When evaluated in MDA-MB-231 cells, entrapment of T3 in niosomes caused 1.5-fold reduction in IC50 value compared with nonformulated T3. In vivo, the average tumor volume of mice treated with tumor-targeted niosomes was 12-fold lower than that of untreated group, accompanied by marked downregulation of three genes involved in metastasis.

    CONCLUSION: Findings suggested that tumor-targeted niosomes served as promising delivery system for T3 in cancer therapy.

    Matched MeSH terms: Transferrin/chemistry*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links