Displaying all 4 publications

Abstract:
Sort:
  1. Mohan K, Sivarajan S, Lau MN, Othman SA, Fayed MMS
    J Orofac Orthop, 2024 Mar;85(2):146-162.
    PMID: 35829730 DOI: 10.1007/s00056-022-00411-9
    PURPOSE: This review systematically evaluates the evidence related to comparisons between skeletal and conventional anchorage protocols in the treatment of bimaxillary proclination patients who underwent premolars extraction with respect to soft tissue profile changes, treatment duration and three-dimensional (3D) soft tissue changes.

    METHODS: Electronic database search and hand search with no language limitations were conducted in the Cochrane Library, PubMed, Ovid, Web of Science, Scopus and ClinicalTrials.gov. The selection criteria were set to include studies with patients aged 13 years and above requiring extractions of upper and lower first premolars to treat bimaxillary proclination with high anchorage demand. Risk of bias assessment was undertaken with Cochrane's Risk Of Bias tool 2.0 (ROB 2.0) for randomised controlled trials (RCTs) and ROBINS‑I tool for nonrandomised prospective studies. The Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach was used for quality assessment. Results were summarised qualitatively; no meta-analysis was conducted.

    RESULTS: Two RCTs and two nonrandomised prospective studies were included. According to the GRADE approach, there is low to very low quality of evidence that treatment using mini-implant anchorage may significantly change nasolabial angle, upper and lower lip procumbence, and facial convexity angle compared to treatment with conventional anchorage. Similarly, very low quality evidence exists showing no differences in treatment duration between treatments with skeletal or conventional anchorage.

    CONCLUSIONS: The overall existing evidence regarding the effect of anchorage protocols on soft tissue changes in patients with bimaxillary protrusion and premolar extraction treatment plans is of low quality.

    TRIAL REGISTRATION NUMBER: PROSPERO CRD42020216684.

    Matched MeSH terms: Tooth Movement/methods
  2. Qamruddin I, Alam MK, Khamis MF, Husein A
    Biomed Res Int, 2015;2015:608530.
    PMID: 26881201 DOI: 10.1155/2015/608530
    To evaluate various noninvasive and minimally invasive procedures for the enhancement of orthodontic tooth movement in animals.
    Matched MeSH terms: Tooth Movement/methods*
  3. Jawad MM, Husein A, Alam MK, Hassan R, Shaari R
    Lasers Med Sci, 2014 Jan;29(1):367-72.
    PMID: 22986701 DOI: 10.1007/s10103-012-1199-8
    The need for orthodontic treatment is increasing all the time. As the treatment is time consuming ranging from a year to several years, any method of reducing the period of treatment and increasing the quality of the tissue will be beneficial to patients. The use of non-invasive techniques such as low level laser therapy and low intensity pulsed ultasound in accelerating orthodontic tooth movement are promising. Thus, this overview study will help to generate more understanding about the background information and the possible applications of them in daily orthodontics, depending on previous literature searching for reviews and original research articles.
    Matched MeSH terms: Tooth Movement/methods*
  4. Sia S, Shibazaki T, Koga Y, Yoshida N
    Am J Orthod Dentofacial Orthop, 2009 Jan;135(1):36-41.
    PMID: 19121498 DOI: 10.1016/j.ajodo.2007.01.034
    This study was designed to determine the optimum vertical height of the retraction force on the power arm that is required for efficient anterior tooth retraction during space closure with sliding mechanics.
    Matched MeSH terms: Tooth Movement/methods*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links