Displaying all 10 publications

Abstract:
Sort:
  1. Angelopoulou E, Paudel YN, Piperi C
    J Mol Med (Berl), 2020 03;98(3):325-334.
    PMID: 32036391 DOI: 10.1007/s00109-020-01885-z
    Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder caused by an increased and unstable CAG DNA expansion in the Huntingtin (HTT) gene, resulting in an elongated polyglutamine tract in huntingtin protein. Despite its monogenic cause, HD pathogenesis remains elusive and without any approved disease-modifying therapy as yet. A growing body of evidence highlights the emerging role of high-mobility group box 1 (HMGB1) protein in HD pathology. HMGB1, being a nuclear protein, is primarily implicated in DNA repair, but it can also translocate to the cytoplasm and participate into numerous cellular functions. Cytoplasmic HMGB1 was shown to directly interact with huntingtin under oxidative stress conditions and induce its nuclear translocation, a key process in the HD pathogenic cascade. Nuclear HMGB1 acting as a co-factor of ataxia telangiectasia mutated and base excision repair (BER) complexes can exert dual roles in CAG repeat instability and affect the final DNA repair outcome. HMGB1 can inhibit mutant huntingtin aggregation, protecting against polyglutamine-induced neurotoxicity and acting as a chaperon-like molecule, possibly via autophagy regulation. In addition, HMGB1 being a RAGE and TLR-2, TLR-3, and TLR-4 ligand may further contribute to HD pathogenesis by triggering neuroinflammation and apoptosis. Furthermore, HMGB1 participates at the unfolded protein response (UPR) system and can induce protein degradation and apoptosis associated with HD. In this review, we discuss the multiple role of HMGB1 in HD pathology, providing mechanistic insights that could direct future studies towards the development of targeted therapeutic approaches.
    Matched MeSH terms: Toll-Like Receptors/metabolism
  2. Hemmati F, Ghasemi R, Mohamed Ibrahim N, Dargahi L, Mohamed Z, Raymond AA, et al.
    Mol Neurobiol, 2014 Dec;50(3):797-810.
    PMID: 24464263 DOI: 10.1007/s12035-013-8631-3
    Neuroinflammation is known as a key player in a variety of neurodegenerative and/or neurological diseases. Brain Toll-like receptors (TLRs) are leading elements in the initiation and progression of neuroinflammation and the development of different neuronal diseases. Furthermore, TLR activation is one of the most important elements in the induction of insulin resistance in different organs such as the central nervous system. Involvement of insulin signaling dysregulation and insulin resistance are also shown to contribute to the pathology of neurological diseases. Considering the important roles of TLRs in neuroinflammation and central insulin resistance and the effects of these processes in the initiation and progression of neurodegenerative and neurological diseases, here we are going to review current knowledge about the potential crosstalk between TLRs and insulin signaling pathways in neuroinflammatory disorders of the central nervous system.
    Matched MeSH terms: Toll-Like Receptors/metabolism*
  3. Wong SK, Chin KY, Ima-Nirwana S
    Curr Drug Targets, 2019;20(12):1264-1280.
    PMID: 30961493 DOI: 10.2174/1389450120666190405172524
    Metabolic Syndrome (MetS) involves a cluster of five conditions, i.e. obesity, hyperglycaemia, hypertension, hypertriglyceridemia and low High-Density Lipoprotein (HDL) cholesterol. All components of MetS share an underlying chronic inflammatory aetiology, manifested by increased levels of pro-inflammatory cytokines. The pathogenic role of inflammation in the development of MetS suggested that toll-like receptor (TLR) activation may trigger MetS. This review summarises the supporting evidence on the interactions between MetS and TLR activation, bridged by the elevation of TLR ligands during MetS. The regulatory circuits mediated by TLR activation, which modulates signal propagation, leading to the state of chronic inflammation, are also discussed. Taken together, TLR activation could be the molecular basis in the development of MetS-induced inflammation.
    Matched MeSH terms: Toll-Like Receptors/metabolism*
  4. Abu N, Rus Bakarurraini NAA, Nasir SN
    Front Immunol, 2021;12:740548.
    PMID: 34721407 DOI: 10.3389/fimmu.2021.740548
    Certain cancer therapy has been shown to induce immunogenic cell death in cancer cells and may promote tumor progression instead. The external stress or stimuli may induce cell death and contribute toward the secretion of pro inflammatory molecules. The release of damage-associated molecular patterns (DAMPs) upon induction of therapy or cell death has been shown to induce an inflammatory response. Nevertheless, the mechanism as to how the DAMPs are released and engage in such activity needs further in-depth investigation. Interestingly, some studies have shown that DAMPs can be released through extracellular vesicles (EVs) and can bind to receptors such as toll-like receptors (TCRs). Ample pre-clinical studies have shown that cancer-derived EVs are able to modulate immune responses within the tumor microenvironment. However, the information on the presence of such DAMPs within EVs is still elusive. Therefore, this mini-review attempts to summarize and appraise studies that have shown the presence of DAMPs within cancer-EVs and how it affects the downstream cellular process.
    Matched MeSH terms: Toll-Like Receptors/metabolism
  5. Karim A, Yousuf A, Islam MA, Naif YH, Faizal CKM, Alam MZ, et al.
    Biotechnol Prog, 2018 07;34(4):838-845.
    PMID: 29464927 DOI: 10.1002/btpr.2625
    The aim of the study was to investigate the feasibility of using irreversible electroporation (EP) as a microbial cell disruption technique to extract intracellular lipid within short time and in an eco-friendly manner. An EP circuit was designed and fabricated to obtain 4 kV with frequency of 100 Hz of square waves. The yeast cells of Lipomyces starkeyi (L. starkeyi) were treated by EP for 2-10 min where the distance between electrodes was maintained at 2, 4, and 6 cm. Colony forming units (CFU) were counted to observe the cell viability under the high voltage electric field. The forces of the pulsing electric field caused significant damage to the cell wall of L. starkeyi and the disruption of microbial cells was visualized by field emission scanning electron microscopic (FESEM) image. After breaking the cell wall, lipid was extracted and measured to assess the efficiency of EP over other techniques. The extent of cell inactivation was up to 95% when the electrodes were placed at the distance of 2 cm, which provided high treatment intensity (36.7 kWh m-3 ). At this condition, maximum lipid (63 mg g-1 ) was extracted when the biomass was treated for 10 min. During the comparison, EP could extract 31.88% lipid while the amount was 11.89% for ultrasonic and 16.8% for Fenton's reagent. The results recommend that the EP is a promising technique for lowering the time and solvent usage for lipid extraction from microbial biomass. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:838-845, 2018.
    Matched MeSH terms: Toll-Like Receptors/metabolism
  6. Suryohastari RRB, Sumarsono SH, Giri-Rachman EA, Edi SP
    Trop Biomed, 2024 Jun 01;41(2):142-148.
    PMID: 39154265 DOI: 10.47665/tb.41.2.002
    Salmonella enterica subsp. enterica serovar Enteritidis (SE) is a global concern for the poultry industry due to its association with foodborne illnesses. The transmission occurs through the transovarial route which initiates from colonization in oviducts and ascending to ovaries. Though there are studies on cytosine-phosphate-guanine oligodeoxynucleotide (CpG-ODN) and the increase of innate immune response, there is limited research on the intravaginal treatment using CpG-ODN. Previous studies have shown that stimulating CpG-ODN can induce the production of antimicrobial peptide avian beta-defensins (AvBDs) in vaginal cell cultures, there is limited information on the use of intravaginal treatment to induce the innate immune system, particularly in the Kampung Unggul Balitbangtan (KUB-1) chickens (Gallus gallus domesticus). This study investigates the impact of intravaginal CpG-ODN stimulation on the innate immune response in KUB-1 chicken ovaries and oviducts when challenged to SE. A total of 39 KUB-1 chickens were divided into four groups namely T1 (treated with CpG-ODN, n=12), T2 (SE group, n=12), T3 (CpG-ODN and SE, n=12), and Control (without CpG-ODN and SE, n=3). Chickens were observed from day 1 to 4 post-intravaginal (PI) inoculation. The results suggest that intravaginal CpG-ODN treatment modulates AvBD10 production through toll-like receptor (TLR)21, with interleukin (IL)1B and IL10 playing reciprocal roles, providing insights into the potential of this treatment to prevent transovarial Salmonellosis in poultry. The novelty of this study adds valuable insights to the current body of knowledge.
    Matched MeSH terms: Toll-Like Receptors/metabolism
  7. Chai HC, Chua KH, Lim SK, Phipps ME
    J Immunol Res, 2014;2014:529167.
    PMID: 24741605 DOI: 10.1155/2014/529167
    Polymorphisms in genes involved in toll-like receptor/interferon signalling pathways have been reported previously to be associated with SLE in many populations. This study aimed to investigate the role of seven single nucleotide polymorphisms within TNFAIP3, STAT4, and IRF5, which are involved in upstream and downstream pathways of type I interferon production, in SLE in the South East Asian populations. Genotyping of 360 Malaysian SLE patients and 430 normal healthy individuals revealed that minor alleles of STAT4 rs7574865 and rs10168266 were associated with elevated risk of SLE in the Chinese and Malay patients, respectively (P = 0.028, odds ratio (OR) = 1.42; P = 0.035, OR = 1.80, respectively). Polymorphisms in TNFAIP3 and IRF5 did not show significant associations with SLE in any of the ethnicities. Combined analysis of the Malays, Chinese, and Indians for each SNP indicated that STAT4 rs10168266 was significantly associated with the Malaysian SLE as a whole (P = 0.014; OR = 1.435). The meta-analysis of STAT4 rs10168266, which combined the data of other studies and this study, further confirmed its importance as the risk factor for SLE by having pooled OR of 1.559 and P value of <0.001.
    Study site: University of Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
    Matched MeSH terms: Toll-Like Receptors/metabolism*
  8. Subramani T, Rathnavelu V, Alitheen NB, Padmanabhan P
    Int J Mol Med, 2015 May;35(5):1151-8.
    PMID: 25812632 DOI: 10.3892/ijmm.2015.2144
    Gingival overgrowth is an undesirable outcome of systemic medication and is evidenced by the accretion of collagenous components in gingival connective tissues along with diverse degrees of inflammation. Phenytoin therapy has been found to induce the most fibrotic lesions in gingiva, cyclosporine caused the least fibrotic lesions, and nifedipine induced intermediate fibrosis in drug‑induced gingival overgrowth. In drug‑induced gingival overgrowth, efficient oral hygiene is compromised and has negative consequences for the systemic health of the patients. Tolllike receptors (TLRs) are involved in the effective recognition of microbial agents and play a vital role in innate immunity and inflammatory signaling responses. TLRs stimulate fibrosis and tissue repairs in several settings, although with evident differences between organs. In particular, TLRs exert a distinct effect on fibrosis in organs with greater exposure to TLR ligands, such as the gingiva. Cumulative evidence from diverse sources suggested that TLRs can affect gingival overgrowth in several ways. Numerous studies have demonstrated the expression of TLRs in gingival tissues and suggested its potential role in gingival inflammation, cell proliferation and synthesis of the extracellular matrix which is crucial to the development of gingival overgrowth. In the present review, we assessed the role of TLRs on individual cell populations in gingival tissues that contribute to the progression of gingival inflammation, and the involvement of TLRs in the development of gingival overgrowth. These observations suggest that TLRs provide new insight into the connection among infection, inflammation, drugs and gingival fibrosis, and are therefore efficient therapeutic target molecules. We hypothesize that TLRs are critical for the development and progression of gingival overgrowth, and thus blocking TLR expression may serve as a novel target for antifibrotic therapy.
    Matched MeSH terms: Toll-Like Receptors/metabolism*
  9. Ibrahim ZA, Armour CL, Phipps S, Sukkar MB
    Mol Immunol, 2013 Dec;56(4):739-44.
    PMID: 23954397 DOI: 10.1016/j.molimm.2013.07.008
    The innate immune system forms the first line of protection against infectious and non-infectious tissue injury. Cells of the innate immune system detect pathogen-associated molecular patterns or endogenous molecules released as a result of tissue injury or inflammation through various innate immune receptors, collectively termed pattern-recognition receptors. Members of the Toll-like receptor (TLR) family of pattern-recognition receptors have well established roles in the host immune response to infection, while the receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor predominantly involved in the recognition of endogenous molecules released in the context of infection, physiological stress or chronic inflammation. RAGE and TLRs share common ligands and signaling pathways, and accumulating evidence points towards their co-operative interaction in the host immune response. At present however, little is known about the mechanisms that result in TLR versus RAGE signalling or RAGE-TLR cross-talk in response to their shared ligands. Here we review what is known in relation to the physicochemical basis of ligand interactions between TLRs and RAGE, focusing on three shared ligands of these receptors: HMGB1, S100A8/A9 and LPS. Our aim is to discuss what is known about differential ligand interactions with RAGE and TLRs and to highlight important areas for further investigation so that we may better understand the role of these receptors and their relationship in host defense.
    Matched MeSH terms: Toll-Like Receptors/metabolism
  10. Sinon SH, Rich AM, Parachuru VP, Firth FA, Milne T, Seymour GJ
    J Oral Pathol Med, 2016 Jan;45(1):28-34.
    PMID: 25865410 DOI: 10.1111/jop.12319
    The objective of this study was to investigate the expression of Toll-like receptors (TLR) and TLR-associated signalling pathway genes in oral lichen planus (OLP).
    Matched MeSH terms: Toll-Like Receptors/metabolism*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links