Displaying all 3 publications

Abstract:
Sort:
  1. Jackson N, Mohammad S, Zainal N, Jamaluddin N, Hishamuddin M
    Med J Malaysia, 1995 Dec;50(4):421-4.
    PMID: 8668069
    A family demonstrating autosomal dominant thrombocytopenia is described. A 28-year-old Malay housewife was found to have a platelet count of 40 x 10(9)/l with a low mean platelet volume (6.8 fl) while being investigated prior to ovarian cystectomy. The bone marrow was consistent with immune thrombocytopenia but she failed to respond to appropriate therapy. Five siblings, one parent and one nephew have easy bruising and platelet counts of 39-82 x 10(9)/l. Platelet aggregation studies excluded a major functional defect. Survival of homologous platelets in the circulation was normal. Familial thrombocytopenias are rare but important to differentiate from the common acquired thrombocytopenias in order to spare the patient unnecessary treatments.
    Matched MeSH terms: Thrombocytopenia/genetics*
  2. Hajar CGN, Zefarina Z, Md Riffin NS, Mohammad THT, Hassan MN, Dafalla AM, et al.
    Ann Lab Med, 2020 11;40(6):493-499.
    PMID: 32539307 DOI: 10.3343/alm.2020.40.6.493
    Matched MeSH terms: Thrombocytopenia/genetics
  3. Rabbolini DJ, Morel-Kopp MC, Chen Q, Gabrielli S, Dunlop LC, Chew LP, et al.
    J Thromb Haemost, 2017 Nov;15(11):2245-2258.
    PMID: 28880435 DOI: 10.1111/jth.13843
    Essentials The phenotypes of different growth factor-independent 1B (GFI1B) variants are not established. GFI1B variants produce heterogeneous clinical phenotypes dependent on the site of mutation. Mutation of the first non-DNA-binding zinc-finger causes a mild platelet and clinical phenotype. GFI1B regulates the CD34 promoter; platelet CD34 expression is an indicator of GFI1B mutation.

    SUMMARY: Background Mutation of the growth factor-independent 1B (GFI1B) fifth DNA-binding zinc-finger domain causes macrothrombocytopenia and α-granule deficiency leading to clinical bleeding. The phenotypes associated with GFI1B variants disrupting non-DNA-binding zinc-fingers remain uncharacterized. Objectives To determine the functional and phenotypic consequences of GFI1B variants disrupting non-DNA-binding zinc-finger domains. Methods The GFI1B C168F variant and a novel GFI1B c.2520 + 1_2520 + 8delGTGGGCAC splice variant were identified in four unrelated families. Phenotypic features, DNA-binding properties and transcriptional effects were determined and compared with those in individuals with a GFI1B H294 fs mutation of the fifth DNA-binding zinc-finger. Patient-specific induced pluripotent stem cell (iPSC)-derived megakaryocytes were generated to facilitate disease modeling. Results The DNA-binding GFI1B variant C168F, which is predicted to disrupt the first non-DNA-binding zinc-finger domain, is associated with macrothrombocytopenia without α-granule deficiency or bleeding symptoms. A GFI1B splice variant, c.2520 + 1_2520 + 8delGTGGGCAC, which generates a short GFI1B isoform that lacks non-DNA-binding zinc-fingers 1 and 2, is associated with increased platelet CD34 expression only, without quantitative or morphologic platelet abnormalities. GFI1B represses the CD34 promoter, and this repression is attenuated by different GFI1B zinc-finger mutations, suggesting that deregulation of CD34 expression occurs at a direct transcriptional level. Patient-specific iPSC-derived megakaryocytes phenocopy these observations. Conclusions Disruption of GFI1B non-DNA-binding zinc-finger 1 is associated with mild to moderate thrombocytopenia without α-granule deficiency or bleeding symptomatology, indicating that the site of GFI1B mutation has important phenotypic implications. Platelet CD34 expression appears to be a common feature of perturbed GFI1B function, and may have diagnostic utility.

    Matched MeSH terms: Thrombocytopenia/genetics*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links