Displaying publications 1 - 20 of 24 in total

Abstract:
Sort:
  1. Usman A, Razak IA, Chantrapromma S, Fun HK, Sreekanth A, Sivakumar S, et al.
    Acta Crystallogr C, 2002 Sep;58(Pt 9):m461-3.
    PMID: 12205370
    One half of the molecule of the title complex, [Mn(C(14)H(13)N(4)S)(2)], is related to the other half by a twofold axis passing through the Mn atom. This high-spin Mn atom is six-coordinated, in an octahedral geometry, by the azomethine N, the pyridyl N and the thiolate S atom of two planar 1-(pyridin-2-yl)ethanone N(4)-phenylthiosemicarbazone ligands. In the crystal, the molecules are interconnected by N-H.S and C-H.N interactions, forming a three-dimensional network.
    Matched MeSH terms: Thiosemicarbazones
  2. Ooi TC, Nordin FJ, Rahmat NS, Abdul Halim SN', Sarip R, Chan KM, et al.
    PMID: 36868695 DOI: 10.1016/j.mrgentox.2022.503581
    Complexes of coinage metals can potentially be used as alternatives to platinum-based chemotherapeutic drugs. Silver is a coinage metal that can potentially improve the spectrum of efficacy in various cancers treatment, such as malignant melanoma. Melanoma is the most aggressive form of skin cancer that is often diagnosed in young and middle-aged adults. Silver has high reactivity with skin proteins and can be developed as a malignant melanoma treatment modality. Therefore, this study aims to identify the anti-proliferative and genotoxic effects of silver(I) complexes with mixed-ligands of thiosemicarbazones and diphenyl(p-tolyl)phosphine ligands in the human melanoma SK-MEL-28 cell line. The anti-proliferative effects of a series of silver(I) complex compounds labelled as OHBT, DOHBT, BrOHBT, OHMBT, and BrOHMBT were evaluated on SK-MEL-28 cells by using the Sulforhodamine B assay. Then, DNA damage analysis was performed in a time-dependent manner (30 min, 1 h and 4 h) by using alkaline comet assay to investigate the genotoxicity of OHBT and BrOHMBT at their respective IC50 values. The mode of cell death was studied using Annexin V-FITC/PI flow cytometry assay. Our current findings demonstrated that all silver(I) complex compounds showed good anti-proliferative activity. The IC50 values of OHBT, DOHBT, BrOHBT, OHMBT, and BrOHMBT were 2.38 ± 0.3 μM, 2.70 ± 0.17 μM, 1.34 ± 0.22 μM, 2.82 ± 0.45 μM, and 0.64 ± 0.04 μM respectively. Then, DNA damage analysis showed that OHBT and BrOHMBT could induce DNA strand breaks in a time-dependent manner, with OHBT being more prominent than BrOHMBT. This effect was accompanied by apoptosis induction in SK-MEL-28, as evaluated using Annexin V-FITC/PI assay. In conclusion, silver(I) complexes with mixed-ligands of thiosemicarbazones and diphenyl(p-tolyl)phosphine exerted anti-proliferative activities by inhibiting cancer cell growth, inducing significant DNA damage and ultimately resulting in apoptosis.
    Matched MeSH terms: Thiosemicarbazones*
  3. Shanmuga Sundara Raj S, Fun HK, Zhang XJ, Tian YP, Xie FX, Ma JL
    Acta Crystallogr C, 2000 Oct;56 (Pt 10):1238-9.
    PMID: 11025310
    In the crystal structure of the title compound, C(11)H(16)N(4)OS, the phenyl ring and the thiosemicarbazone moiety from a dihedral angle of 7.7 (1) degrees. The crystal structure is governed by N-H.O and O-H.S hydrogen bonds leading to the formation of a two-dimensional network.
    Matched MeSH terms: Thiosemicarbazones
  4. Shanmuga Sundara Raj S, Fun HK, Lu ZL, Xiao W, Gong XY, Gen CM
    Acta Crystallogr C, 2000 Aug;56 (Pt 8):1013-4.
    PMID: 10944309
    The crystal structure of the title compound, C(15)H(14)N(2)O(2). H(2)O, is in the keto tautomeric form and the configuration at the azomethine C=N double bond is E. The molecule is non-planar, with a dihedral angle of 27.3 (1) degrees between the aromatic rings. The crystal structure is stabilized by extensive hydrogen bonding involving the water molecule and hydrazone moiety.
    Matched MeSH terms: Thiosemicarbazones
  5. Mohammed IA, Sankar G, Khairuddean M, Mohamad AB
    Molecules, 2010 Apr 30;15(5):3260-9.
    PMID: 20657475 DOI: 10.3390/molecules15053260
    A series of new mesogenic azomethine diols were successfully synthesized by condensation reactions between various chloroalkanols and N,N'-bis(4-hydroxy)-benzylidene-o-toluidine (1). The structures of these compounds were confirmed by CHN, FT-IR, (1)H-NMR, and (13)C-NMR spectrophotometer. Their thermotropic liquid crystalline behavior was studied using differential scanning calorimetry (DSC) and polarizing optical microscope (POM). 4,4'-di(4-Hydroxybutoxy)-N-benzylidine-o-tolidine (2a) does not exhibit liquid crystalline properties. A nematic texture was observed for mesogenic diols 2b, and 2d, whereas the diol 2c exhibits a smectic mesophase. The increase of terminal alkyl chain in these mesogenic diols leads to a decrease in the transition temperature.
    Matched MeSH terms: Thiosemicarbazones/chemistry*
  6. Sambasevam KP, Mohamad S, Sarih NM, Ismail NA
    Int J Mol Sci, 2013;14(2):3671-82.
    PMID: 23434664 DOI: 10.3390/ijms14023671
    A β-cyclodextrin (β-Cyd) inclusion complex containing azomethine as a guest was prepared by kneading method with aliquot addition of ethanol. The product was characterized by Fourier Transform Infrared (FTIR) spectrometer, 1H Nuclear Magnetic Resonance (1H NMR) and Thermogravimetric Analyzer (TGA), which proves the formation of the inclusion complex where the benzyl part of azomethine has been encapsulated by the hydrophobic cavity of β-Cyd. The interaction of β-Cyd and azomethine was also analyzed by means of spectrometry by UV-Vis spectrophotometer to determine the formation constant. The formation constant was calculated by using a modified Benesi-Hildebrand equation at 25 °C. The apparent formation constant obtained was 1.29 × 104 L/mol. Besides that, the stoichiometry ratio was also determined to be 1:1 for the inclusion complex of β-Cyd with azomethine.
    Matched MeSH terms: Thiosemicarbazones
  7. Shehzad MT, Hameed A, Al-Rashida M, Imran A, Uroos M, Asari A, et al.
    Bioorg Chem, 2019 11;92:103244.
    PMID: 31541804 DOI: 10.1016/j.bioorg.2019.103244
    The role of aldose reductase (ALR2) in diabetes mellitus is well-established. Our interest in finding ALR2 inhibitors led us to explore the inhibitory potential of new thiosemicarbazones. In this study, we have synthesized adamantyl-thiosemicarbazones and screened them as aldehyde reductase (ALR1) and aldose reductase (ALR2) inhibitors. The compounds bearing phenyl 3a, 2-methylphenyl 3g and 2,6-dimethylphenyl 3m have been identified as most potent ALR2 inhibitors with IC50 values of 3.99 ± 0.38, 3.55 ± 0.26 and 1.37 ± 0.92 µM, respectively, compared with sorbinil (IC50 = 3.14 ± 0.02 μM). The compounds 3a, 3g, and 3m also inhibit ALR1 with IC50 value of 7.75 ± 0.28, 7.26 ± 0.39 and 7.04 ± 2.23 µM, respectively. Molecular docking was also performed for putative binding of potent inhibitors with target enzyme ALR2. The most potent 2,6-dimethylphenyl bearing thiosemicarbazone 3m (IC50 = 1.37 ± 0.92 µM for ALR2) and other two compound 3a and 3g could potentially lead for the development of new therapeutic agents.
    Matched MeSH terms: Thiosemicarbazones/chemical synthesis*; Thiosemicarbazones/pharmacology; Thiosemicarbazones/chemistry
  8. Chantrapromma S, Kaewmanee N, Boonnak N, Chantrapromma K, Ghabbour HA, Fun HK
    Acta Crystallogr E Crystallogr Commun, 2015 Jun 1;71(Pt 6):571-3.
    PMID: 26090124 DOI: 10.1107/S2056989015008348
    The title aza-stilbene derivative, C14H13NO2 {systematic name: (E)-2-[(4-meth-oxy-benzyl-idene)amino]-phenol}, is a product of the condensation reaction between 4-meth-oxy-benzaldehyde and 2-amino-phenol. The mol-ecule adopts an E conformation with respect to the azomethine C=N bond and is almost planar, the dihedral angle between the two substituted benzene rings being 3.29 (4)°. The meth-oxy group is coplanar with the benzene ring to which it is attached, the Cmeth-yl-O-C-C torsion angle being -1.14 (12)°. There is an intra-molecular O-H⋯N hydrogen bond generating an S(5) ring motif. In the crystal, mol-ecules are linked via C-H⋯O hydrogen bonds, forming zigzag chains along [10-1]. The chains are linked via C-H⋯π inter-actions, forming a three-dimensional structure.
    Matched MeSH terms: Thiosemicarbazones
  9. Ibrahim AA, Khaledi H, Hassandarvish P, Mohd Ali H, Karimian H
    Dalton Trans, 2014 Mar 14;43(10):3850-60.
    PMID: 24442181 DOI: 10.1039/c3dt53032a
    A new thiosemicarbazone (LH2) derived from indole-7-carbaldehyde was synthesized and reacted with Zn(II), Cd(II), Pd(II) and Pt(II) salts. The reactions with zinc and cadmium salts in 2 : 1 (ligand-metal) molar ratio afforded complexes of the type MX2(LH2)2, (X = Cl, Br or OAc), in which the thiosemicarbazone acts as a neutral S-monodentate ligand. In the presence of potassium hydroxide, the reaction of LH2 with ZnBr2 resulted in deprotonation of the thiosemicarbazone at the hydrazine and indole nitrogens to form Zn(L)(CH3OH). The reaction of LH2 with K2PdCl4 in the presence of triethylamine, afforded Pd(L)(LH2) which contains two thiosemicarbazone ligands: one being dianionic N,N,S-tridentate while the other one is neutral S-monodentate. When PdCl2(PPh3)2 was used as the Pd(II) ion source, Pd(L)(PPh3) was obtained. In a similar manner, the analogous platinum complex, Pt(L)(PPh3), was synthesized. The thiosemicarbazone in the latter two complexes behaves in a dianionic N,N,S-tridentate fashion. The platinum complex was found to have significant cytotoxicity toward four cancer cells lines, namely MDA-MB-231, MCF-7, HT-29, and HCT-116 but not toward the normal liver WRL-68 cell line. The apoptosis-inducing properties of the Pt complex was explored through fluorescence microscopy visualization, DNA fragmentation analysis and propidium iodide flow cytometry.
    Matched MeSH terms: Thiosemicarbazones/pharmacology*; Thiosemicarbazones/chemistry
  10. Al-Majedy YK, Al-Amiery AA, Kadhum AA, Mohamad AB
    Biomed Res Int, 2016;2016:5891703.
    PMID: 27563671 DOI: 10.1155/2016/5891703
    The problem of bacteria resistance to many known agents has inspired scientists and researchers to discover novel efficient antibacterial drugs. Three rapid, clean, and highly efficient methods were developed for one-pot synthesis of 7-(aryl)-10,10-dimethyl-10,11-dihydrochromeno[4,3-b]chromene-6,8(7H,9H)-dione derivatives. Three components are condensed in the synthesis, 4-hydroxycoumarin, 5,5-dimethyl-1,3-cyclohexanedione, and aromatic aldehydes, using tetrabutylammonium bromide (TBAB), diammonium hydrogen phosphate (DAHP), or ferric chloride (FeCl3), respectively. Each method has different reaction mechanisms according to the catalyst. The present methods have advantages, including one-pot synthesis, excellent yields, short reaction times, and easy isolation of product. All catalysts utilized in our study could be reused several times without losing their catalytic efficiency. All synthesized compounds were fully characterized and evaluated for their antibacterial activity.
    Matched MeSH terms: Thiosemicarbazones/chemical synthesis*; Thiosemicarbazones/pharmacology
  11. Qazi SU, Naz A, Hameed A, Osra FA, Jalil S, Iqbal J, et al.
    Bioorg Chem, 2021 10;115:105209.
    PMID: 34364054 DOI: 10.1016/j.bioorg.2021.105209
    A series of semicarbazone, thiosemicarbazone, thiazole, and oxazole derivatives were designed, synthesized, and examined for monoamine oxidase inhibition using two isoforms, i.e., MAO-A and MAO-B. Among all the analogues, 3c and 3j possessed substantial activity against MAO-A with IC50 values of 5.619 ± 1.04 µM and 0.5781 ± 0.1674 µM, respectively. Whereas 3d and 3j were active against monoamine oxidase B with the IC50 values of 9.952 ± 1.831 µM and 3.5 ± 0.7 µM, respectively. Other derivatives active against MAO-B were 3c and 3g with the IC50 values of 17.67 ± 5.6 µM and 37.18 ± 2.485 µM. Moreover, molecular docking studies were achieved for the most potent compound (3j) contrary to human MAO-A and MAO-B. Kinetic studies were also performed for the most potent analogue to evaluate its mode of interaction with MAO-A and MAO-B.
    Matched MeSH terms: Thiosemicarbazones/pharmacology*; Thiosemicarbazones/chemistry
  12. Ali AQ, Teoh SG, Salhin A, Eltayeb NE, Khadeer Ahamed MB, Abdul Majid AM
    PMID: 24607427 DOI: 10.1016/j.saa.2014.01.086
    New derivatives of thiosemicarbazone Schiff base with isatin moiety were synthesized L1-L6. The structures of these compounds were characterized based on the spectroscopic techniques. Compound L6 was further characterized by XRD single crystal. The interaction of these compounds with calf thymus (CT-DNA) exhibited high intrinsic binding constant (k(b)=5.03-33.00×10(5) M(-1)) for L1-L3 and L5 and (6.14-9.47×10(4) M(-1)) for L4 and L6 which reflect intercalative activity of these compounds toward CT-DNA. This result was also confirmed by the viscosity data. The electrophoresis studies reveal the higher cleavage activity of L1-L3 than L4-L6. The in vitro anti-proliferative activity of these compounds against human colon cancer cell line (HCT 116) revealed that the synthesized compounds (L3, L6 and L2) exhibited good anticancer potency.
    Matched MeSH terms: Thiosemicarbazones/chemical synthesis*; Thiosemicarbazones/pharmacology*; Thiosemicarbazones/chemistry
  13. Sinniah SK, Tan KW, Ng SW, Sim KS
    Anticancer Agents Med Chem, 2017;17(5):741-753.
    PMID: 27671302 DOI: 10.2174/1871520616666160926110929
    BACKGROUND: Thiosemicarbazone (TSC) is a Schiff base that has been receiving considerable attention owing to its promising biological implication and remarkable pharmacological properties. The most promising drug candidate of this class would be Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone) which has entered phase II clinical trials as a potent anti-cancer chemotherapeutic agent.

    OBJECTIVE: The current research aimed to synthesize several Schiff base ligands from (3-formyl-4-hydroxyphenyl) methyltriphenylphosphonium (T). Additionally, the current research aimed to study the growth inhibitory effect of triphenylphosphonium containing thiosemicarbazone derivatives on PC-3 cells by deciphering the mechanisms involved in cell death.

    METHOD: The compounds were characterized by various spectroscopic methods (infrared spectra, 1H NMR, 13C NMR, HRESIMS and X-ray crystallography) and the results were in conformity with the structure of the targeted compounds. Growth inhibitory effect of the compounds were performed against six human cell lines.

    RESULTS: DM(tsc)T displayed most potent activity against PC-3 cells with IC50 value of 2.64 ± 0.33 μM, surpassing that of the positive control cisplatin (5.47 ± 0.06 μM). There were marked morphological changes observed in DM(tsc)T treated cells stained with acridine orange and ethidium bromide which were indicative of cell apoptosis. Treatment with DM(tsc)T showed that the cell cycle is arrested in the G0/G1 phase after 72 hours. Mitochondrial membrane potential loss was observed in cells treated with DM(tsc)T, indicating the apoptosis could be due to mitochondria mediated pathway.

    CONCLUSION: This study indicates that DM(tsc)T would serve as a lead scaffold for rational anticancer agent development.

    Matched MeSH terms: Thiosemicarbazones/chemical synthesis; Thiosemicarbazones/pharmacology*; Thiosemicarbazones/chemistry
  14. Swesi AT, Yang Farina, Ibrahim Baba
    Sains Malaysiana, 2007;36:21-26.
    Organotin compounds especially the dialkyltin derivatives are reported to possess anti-tumour properties. The diorganotin(IV) complexes of the type Me2SnL1, Me2SnL2, Bu2SnL1, Bu2SnL2 and Ph2SnL1 (L1 and L2 is the anion of the thiosemicarbazone ligand formed by the condensation reaction of 2,3-dihydroxybenzaldehyde with thiosemicarbazide or its N(4)-methyl substituent) were synthesized using 1:1 metal-to-ligand reactant ratios. The newly synthesized complexes were characterized using elemental analysis, infrared and nuclear magnetic resonance (1H, 13C, 119Sn) spectroscopic techniques. Complex formation between the organotin(IV) moiety and the anions of 2,3-dihydroxybenzaldehyde thiosemicarbazone and 2,3-dihydroxybenzaldehyde 4-methylthiosemicarbazone occurred with chelation at the o-dihydroxy positions. The complexes are proposed to have tetrahedral geometry.
    Matched MeSH terms: Thiosemicarbazones
  15. Hashmi S, Khan S, Shafiq Z, Taslimi P, Ishaq M, Sadeghian N, et al.
    Bioorg Chem, 2021 02;107:104554.
    PMID: 33383322 DOI: 10.1016/j.bioorg.2020.104554
    With the fading of 'one drug-one target' approach, Multi-Target-Directed Ligands (MTDL) has become a central idea in modern Medicinal Chemistry. The present study aimed to design, develop and characterize a novel series of 4-(Diethylamino)-salicylaldehyde based thiosemicarbazones (3a-p) and evaluates their biological activity against cholinesterase, carbonic anhydrases and α-glycosidase enzymes. The hCA I isoform was inhibited by these novel 4-(diethylamino)-salicylaldehyde-based thiosemicarbazones (3a-p) in low nanomolar levels, the Ki of which differed between 407.73 ± 43.71 and 1104.11 ± 80.66 nM. Against the physiologically dominant isoform hCA II, the novel compounds demonstrated Kis varying from 323.04 ± 56.88 to 991.62 ± 77.26 nM. Also, these novel 4-(diethylamino)-salicylaldehyde based thiosemicarbazones (3a-p) effectively inhibited AChE, with Ki values in the range of 121.74 ± 23.52 to 548.63 ± 73.74 nM. For BChE, Ki values were obtained with in the range of 132.85 ± 12.53 to 618.53 ± 74.23 nM. For α-glycosidase, the most effective Ki values of 3b, 3k, and 3g were with Ki values of 77.85 ± 10.64, 96.15 ± 9.64, and 124.95 ± 11.44 nM, respectively. We have identified inhibition mechanism of 3b, 3g, 3k, and 3n on α-glycosidase AChE, hCA I, hCA II, and BChE enzyme activities. Hydrazine-1-carbothioamide and hydroxybenzylidene moieties of compounds play an important role in the inhibition of AChE, hCA I, and hCA II enzymes. Hydroxybenzylidene moieties are critical for inhibition of both BChE and α-glycosidase enzymes. The findings of in vitro and in silico evaluations indicate 4-(diethylamino)-salicylaldehyde-based thiosemicarbazone scaffold to be a promising hit for drug development for multifactorial diseases like Alzheimer's disease.
    Matched MeSH terms: Thiosemicarbazones/metabolism; Thiosemicarbazones/chemistry*
  16. Ishaq M, Taslimi P, Shafiq Z, Khan S, Ekhteiari Salmas R, Zangeneh MM, et al.
    Bioorg Chem, 2020 07;100:103924.
    PMID: 32442818 DOI: 10.1016/j.bioorg.2020.103924
    In recent decade, the entrance of α-N-heterocyclic thiosemicarbazones derivates (Triapne, COTI-2 and DpC) in clinical trials for cancer and HIV-1 has vastly increased the interests of medicinal chemists towards this class of organic compounds. In the given study, a series of eighteen new (3a-r) 3-ethoxy salicylaldehyde-based thiosemicarbazones (TSC), bearing aryl and cycloalkyl substituents, were synthesized and assayed for their pharmacological potential against carbonic anhydrases (hCA I and hCA II), cholinesterases (AChE and BChE) and α-glycosidase. The hCA I isoform was inhibited by these novel 3-ethoxysalicylaldehyde thiosemicarbazone derivatives (3a-r) in low nanomolar levels, the Ki of which differed between 144.18 ± 26.74 and 454.92 ± 48.32 nM. Against the physiologically dominant isoform hCA II, the novel compounds demonstrated Kis varying from 110.54 ± 14.05 to 444.12 ± 36.08 nM. Also, these novel derivatives (3a-r) effectively inhibited AChE, with Ki values in the range of 385.38 ± 45.03 to 983.04 ± 104.64 nM. For BChE was obtained with Ki values in the range of 400.21 ± 35.68 to 1003.02 ± 154.27 nM. For α-glycosidase the most effective Ki values of 3l, 3n, and 3q were with Ki values of 12.85 ± 1.05, 16.03 ± 2.84, and 19.16 ± 2.66 nM, respectively. Moreover, the synthesized TCSs were simulated using force field methods whereas the binding energies of the selected compounds were estimated using MM-GBSA method. The findings indicate the present novel 3-ethoxy salicylaldehyde-based thiosemicarbazones to be excellent hits for pharmaceutical applications.
    Matched MeSH terms: Thiosemicarbazones/chemical synthesis; Thiosemicarbazones/pharmacology; Thiosemicarbazones/chemistry*
  17. Tahlan S, Narasimhan B, Lim SM, Ramasamy K, Mani V, Shah SAA
    Mini Rev Med Chem, 2020;20(15):1559-1571.
    PMID: 30179132 DOI: 10.2174/1389557518666180903151849
    BACKGROUND: Various analogues of benzimidazole are found to be biologically and therapeutically potent against several ailments. Benzimidazole when attached with heterocyclic rings has shown wide range of potential activities. So, from the above provided facts, we altered benzimidazole derivatives so that more potent antagonists could be developed. In the search for a new category of antimicrobial and anticancer agents, novel azomethine of 2-mercaptobenzimidazole derived from 3-(2- (1H-benzo[d]imidazol-2-ylthio)acetamido)benzohydrazide were synthesized.

    RESULTS AND DISCUSSION: The synthesized analogues were characterized by FT-IR, 1H/13C-NMR and MS studies as well C, H, N analysis. All synthesized compounds were evaluated for in vitro antibacterial activity against Gram-positive (B. subtilis), Gram-negative (E. coli, P. aeruginosa, K. pneumoniae and S. typhi) strains and in vitro antifungal activity against C. albicans and A. niger strains by serial dilution method, the minimum inhibitory concentration (MIC) described in μM/ml. The in vitro anticancer activity of synthesized compounds was determined against human colorectal carcinoma cell line (HCT- 116) using 5-fluorouracil as standard drug.

    CONCLUSION: In general, most of the synthesized derivatives exhibited significant antimicrobial and anticancer activities. Compounds 8, 10, 15, 16, 17, 20 and 22 showed significant antimicrobial activity towards tested bacterial and fungal strains and compound 26 exhibited significant anticancer activity.

    Matched MeSH terms: Thiosemicarbazones/chemical synthesis; Thiosemicarbazones/pharmacology; Thiosemicarbazones/chemistry*
  18. Chigurupati S, Shaikh SA, Mohammad JI, Selvarajan KK, Nemala AR, Khaw CH, et al.
    Indian J Pharmacol, 2017 10 17;49(3):229-235.
    PMID: 29033482 DOI: 10.4103/ijp.IJP_293_16
    OBJECTIVES: In this study, three (CS-1 to CS-3) azomethine derivatives of cinnamaldehyde were green synthesized, characterized, and their antioxidant and antidepressant activities were explored.

    MATERIALS AND METHODS: The antioxidant effect of these compounds was initially performed in vitro using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay methods before subjecting them to in vivo experiments. Compounds showing potent antioxidant activity (CS-1 and CS-2) were investigated further for their antidepressant activity using the forced swim test (FST) and tail suspension test (TST). Ascorbic acid (AA) and fluoxetine (20 mg/kg, p.o) were used as reference drugs for comparison in the antioxidant and antidepressant experiments, respectively.

    RESULTS: It was observed that CS-2 and CS-3 exhibited highest DPPH (half maximal inhibitory concentration [IC50]: 16.22 and 25.18 μg/mL) and ABTS (IC50: 17.2 and 28.86 μg/mL) radical scavenging activity, respectively, compared to AA (IC50: 15.73 and 16.79 μg/mL) and therefore, both CS-2 and CS-3 were tested for their antidepressant effect using FST and TST as experimental models. Pretreatment of CS-2 and CS-3 (20 mg/kg) for 10 days considerably decreased the immobility time in both the FST and TST models.

    CONCLUSION: The antioxidant and antidepressant effect of CS-2 and CS-3 may be attributed to the presence of azomethine linkage in the molecule.

    Matched MeSH terms: Thiosemicarbazones/chemical synthesis*; Thiosemicarbazones/pharmacology*
  19. Saswati, Adão P, Majumder S, Dash SP, Roy S, Kuznetsov ML, et al.
    Dalton Trans, 2018 Aug 21;47(33):11358-11374.
    PMID: 30059099 DOI: 10.1039/c8dt01668b
    The synthesis and characterization of an oxidovanadium(iv) [VIVO(L)(acac)] (1) and of two dioxidovanadium(v) [VVO2(L')] (2) and [VVO2(L)] (2a) complexes of the Schiff base formed from the reaction of 4-(p-fluorophenyl) thiosemicarbazone with pyridine-2-aldehyde (HL) are described. The oxidovanadium(iv) species [VIVO(L)(acac)] (1) was synthesized by the reaction of VIVO(acac)2 with the thiosemicarbazone HL in refluxing ethanol. The recrystallization of [VIVO(L)(acac)] (1) in DMF, CH3CN or EtOH gave the same product i.e. the dioxidovanadium(v) complex [VVO2(L)] (2a); however, upon recrystallization of 1 in DMSO a distinct compound [VVO2(L')] (2) was formed, wherein the original ligand L- is transformed to a rearranged one, L'-. In the presence of DMSO the ligand in complex 1 is found to undergo methylation at the carbon centre attached to imine nitrogen (aldimine) and transformed to the corresponding VVO2-species through in situ reaction. The synthesized HL and the metal complexes were characterized by elemental analysis, IR, UV-Vis, NMR and EPR spectroscopy. The molecular structure of [VVO2(L')] (2) was determined by single crystal X-ray crystallography. The methylation of various other ligands and complexes prepared from different vanadium precursors under similar reaction conditions was also attempted and it was confirmed that the imine methylation observed is both ligand and metal precursor specific. Complexes 1 and 2 show in vitro insulin-like activity against insulin responsive L6 myoblast cells, higher than VIVO(acac)2, with complex 1 being more potent. In addition, the in vitro cytotoxicity studies of HL, and of complexes 1 and 2 against the MCF-7 and Vero cell lines were also done. The ligand is not cytotoxic and complex 2 is significantly more cytotoxic than 1. DAPI staining experiments indicate that an increase in the time of incubation and an increase of concentration of the complexes lead to the increase in cell death.
    Matched MeSH terms: Thiosemicarbazones
  20. Chah, C.K., Ravoof, T.B.S.A., Veerakumarasivam, A.
    MyJurnal
    A novel nitrogen-sulphur macrocyclic Schiff base, 4,11,20,27-tetrathioxo3,12,19,28-tetrathia-5,6,9,10,21,22,25,26-octaazatricyclo[28.2.2.214,17]hexatriaconta 1(33),6,8,14(36),15,17(35),22,24,30(34),31-decaene-2,13,18,29-tetraone (TGSB) derived from terephthaloyl-bis-dithiocarbazate (TDTC) and glyoxal (ethane-1,2-dione) is synthesised via condensation. Metal complexes are formed by reacting the Schiff base with various metal salts such as Ru(III), Mo(V), Cd(II), Zn(II) and Cu(II). The complexes are expected to have a general formula of M2L or M3L with a square planar or square pyramidal geometry. These compounds were characterised by various physicochemical and spectroscopic techniques. From the data, it is concluded that the azomethine nitrogen atom and the thiolate sulphur atom from the ligand are bonded to the metal ion. In the IR spectra of the complexes, the presence of the C=N band in the region of 1600 cm-1 indicates the successful formation of the Schiff base. The structures of the Schiff base and metal complexes are confirmed via FT-IR, GC-MS and NMR spectroscopic analysis. The magnetic susceptibility measurements, electronic spectral data and molar conductivity analysis support the desired geometry of the complexes. The Schiff base and its metal complexes are evaluated for their biological activities against the invasive human bladder carcinoma cell line (EJ-28) and the minimuminvasive human bladder carcinoma cell line (RT-112). The RuTGSB and CdTGSB complexes showed selective activity against RT-112.
    Matched MeSH terms: Thiosemicarbazones
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links