Displaying all 2 publications

Abstract:
Sort:
  1. Hassan LE, Ahamed MB, Majid AS, Baharetha HM, Muslim NS, Nassar ZD, et al.
    BMC Complement Altern Med, 2014 Oct 20;14:406.
    PMID: 25331269 DOI: 10.1186/1472-6882-14-406
    BACKGROUND: Consumption of medicinal plants to overcome diseases is traditionally belongs to the characteristics of most cultures on this earth. Sudan has been a host and cradle to various ancient civilizations and developed a vast knowledge on traditional medicinal plants. The present study was undertaken to evaluate the antioxidant, antiangiogenic and cytotoxic activities of six Sudanese medicinal plants which have been traditionally used to treat neoplasia. Further the biological activities were correlated with phytochemical contents of the plant extracts.

    METHODS: Different parts of the plants were subjected to sequential extraction method. Cytotoxicity of the extracts was determined by dimethylthiazol-2-yl)- 2,5diphenyl tetrazolium bromide (MTT) assay on 2 human cancer (colon and breast) and normal (endothelial and colon fibroblast) cells. Anti-angiogenic potential was tested using ex vivo rat aortic ring assay. DPPH (1,1-diphenyl-2-picrylhydrazyl) assay was conducted to screen the antioxidant capabilities of the extracts. Finally, total phenolic and flavonoid contents were estimated in the extracts using colorimetric assays.

    RESULTS: The results indicated that out of 6 plants tested, 4 plants (Nicotiana glauca, Tephrosia apollinea, Combretum hartmannianum and Tamarix nilotica) exhibited remarkable anti-angiogenic activity by inhibiting the sprouting of microvessels more than 60%. However, the most potent antiangiogenic effect was recorded by ethanol extract of T. apollinea (94.62%). In addition, the plants exhibited significant antiproliferative effects against human breast (MCF-7) and colon (HCT 116) cancer cells while being non-cytotoxic to the tested normal cells. The IC50 values determined for C. hartmannianum, N. gluaca and T. apollinea against MCF-7 cells were 8.48, 10.78 and 29.36 μg/ml, respectively. Whereas, the IC50 values estimated for N. gluaca, T. apollinea and C. hartmannianum against HCT 116 cells were 5.4, 20.2 and 27.2 μg/ml, respectively. These results were more or less equal to the standard reference drugs, tamoxifen (IC50 = 6.67 μg/ml) and 5-fluorouracil (IC50 = 3.9 μg/ml) tested against MCF-7 and HCT 116, respectively. Extracts of C. hartmannianum bark and N. glauca leaves demonstrated potent antioxidant effect with IC50s range from 9.4-22.4 and 13.4-30 μg/ml, respectively. Extracts of N. glauca leaves and T apollinea aerial parts demonstrated high amount of flavonoids range from 57.6-88.1 and 10.7-78 mg quercetin equivalent/g, respectively.

    CONCLUSIONS: These results are in good agreement with the ethnobotanical uses of the plants (N. glauca, T. apollinea, C. hartmannianum and T. nilotica) to cure the oxidative stress and paraneoplastic symptoms caused by the cancer. These findings endorse further investigations on these plants to determine the active principles and their mode of action.

    Matched MeSH terms: Tephrosia/chemistry
  2. Hassan LEA, Iqbal MA, Dahham SS, Tabana YM, Ahamed MBK, Majid AMSA
    Anticancer Agents Med Chem, 2017;17(4):590-598.
    PMID: 27671298 DOI: 10.2174/1871520616666160926113711
    BACKGROUND: Cancer is characterized by uncontrolled cell division caused by dysregulation of cell proliferation. Therefore, agents that impair cancer cell proliferation could have potential therapeutic value. Higher plants are considered to be a good source of anticancer agents, and several clinically tested chemotherapeutic agents have been isolated from plants or derived from constituents of plant origin.

    METHODS: In the present study, a prenylated flavone (isoglabratephrin) was isolated from aerial parts of Tephrosia apollinea using a bioassay-guided technique. Chemical structure of the isolated compound was elucidated using spectroscopic techniques (NMR, IR, and LC-MC), elemental analysis and confirmed by using single crystal X-ray analysis. The antiproliferative effect of isoglabratephrin was tested using three human cancer cell lines (prostate (PC3), pancreatic (PANC-1), and colon (HCT-116) and one normal cell line (human fibroblast).

    RESULTS: Isoglabratephrin displayed selective inhibitory activity against proliferation of PC3 and PANC-1 cells with median inhibitory concentration values of 20.4 and 26.6 μg/ml, respectively. Isoglabratephrin demonstrated proapoptotic features, as it induced chromatin dissolution, nuclear condensation, and fragmentation. It also disrupted the mitochondrial membrane potential in the treated cancer cells.

    CONCLUSION: Isoglabratephrin could be a new lead to treat human prostate (PC3) and pancreatic (PANC-1) malignancies.

    Matched MeSH terms: Tephrosia/chemistry*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links