Displaying all 15 publications

Abstract:
Sort:
  1. Desai K, Dharaskar S, Khalid M, Gupta TCSM
    Environ Sci Pollut Res Int, 2021 Jun;28(21):26747-26761.
    PMID: 33491146 DOI: 10.1007/s11356-021-12391-1
    The novel phosphonium-based ionic liquid (IL), triphenyl methyl phosphonium tosylate ([TPMP][Tos]), has been synthesized and applied as a phase transfer catalyst (PTC) in the ultrasound-assisted oxidative desulfurization (UAODS). Oxidation of model fuel (MF) containing dibenzothiophene (DBT) was carried out using an equimolar mixture of H2O2-CH3COOH as an oxidant at 40-70 °C in the presence of IL. The sulfur compound is converted into polar sulfone, and the maximum desulfurization efficiency was examined. The effect of process parameters such as reaction temperature, reaction time, molar ratio of oxidant to sulfur (n(O/S)), and the mass ratio of ionic liquid to model fuel (m(IL/MF)) was studied, and the conditions for maximizing the DBT conversion rate were found. Maximum conversion (> 99%) was obtained at a temperature of 70 °C with m(IL/MF) of 0.8. The oxidation reactivity of various sulfur compounds was studied at different time intervals. To verify the effect of ionic liquid and ultrasound irradiation, extractive desulfurization (EDS), oxidative desulfurization (ODS), and UAODS in the presence of IL were carried out. The experimental results show that the UAODS process gives the highest desulfurization efficiency. A kinetic study was performed to estimate the rate constant and the order of oxidation reaction.
    Matched MeSH terms: Sulfur Compounds*
  2. Arifin K, Minggu LJ, Daud WR, Yamin BM, Daik R, Kassim MB
    PMID: 24184623 DOI: 10.1016/j.saa.2013.09.069
    A new homoleptic dithiolene tungsten complex, tris-{1,2-bis(3,5-dimethoxyphenyl)-1,2-ethylenodithiolene-S,S'}tungsten, was successfully synthesized via a reaction of the thiophosphate ester and sodium tungstate. The thiophosphate ester was prepared from 3,5-dimethoxybenzaldehyde via benzoin condensation to produce the intermediate 1,2-bis-(3,5-dimethoxyphenyl)-2-hydroxy-ethanone compound, followed by a reaction of the intermediate with phosphorus pentasulfide. FTIR, UV-Vis spectroscopy, 1H NMR and 13C NMR and elemental analysis confirmed the product as tris{1,2-bis-(3,5-dimethoxyphenyl)-1,2-ethylenodithiolene-S,S'}tungsten with the molecular formula of C54H54O12S6W. Crystals of the product adopted a monoclinic system with space group of P2(1)/n, where a=12.756(2) Å, b=21.560(3) Å, c=24.980(4) Å and β=103.998(3)°. Three thioester ligands were attached to the tungsten as bidentate chelates to form a distorted octahedral geometry. Density functional theory calculations were performed to investigate the molecular properties in a generalized-gradient approximation framework system using Perdew-Burke-Ernzerhof functions and a double numeric plus polarization basis set. The HOMO was concentrated on the phenyl ligands, while the LUMO was found along the W(S2C2)3 rings. The theoretical optical properties showed a slight blue shift in several low dielectric solvents. The solvatochromism effect was insignificant for high polar solvents.
    Matched MeSH terms: Sulfur Compounds/chemical synthesis; Sulfur Compounds/chemistry*
  3. Hammad MM, Darwazeh AM, Al-Waeli H, Tarakji B, Alhadithy TT
    J Int Soc Prev Community Dent, 2014 Dec;4(Suppl 3):S178-86.
    PMID: 25625076 DOI: 10.4103/2231-0762.149033
    This study was conducted to estimate the prevalence and awareness of halitosis among the subjects of a population, and also to compare the results of Halimeter(®) readings to self-estimation of halitosis and to assess the relationship between halitosis and oral health.
    Matched MeSH terms: Sulfur Compounds
  4. Willis Poratti G, Yaakop AS, Chan CS, Urbieta MS, Chan KG, Ee R, et al.
    Genome Announc, 2016;4(4).
    PMID: 27540078 DOI: 10.1128/genomeA.00870-16
    Desulfotomaculum copahuensis strain CINDEFI1 is a novel spore-forming sulfate-reducing bacterium isolated from the Copahue volcano area, Argentina. Here, we present its draft genome in which we found genes related with the anaerobic respiration of sulfur compounds similar to those present in the Copahue environment.
    Matched MeSH terms: Sulfur Compounds
  5. Rafique S, Abdullah SM, Shahid MM, Ansari MO, Sulaiman K
    Sci Rep, 2017 01 13;7:39555.
    PMID: 28084304 DOI: 10.1038/srep39555
    This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC71BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability.
    Matched MeSH terms: Sulfur Compounds
  6. Pairu Ibrahim, Wan Manshol Wan Zain, Chai, Chee Keong, Sofian Ibrahim, Mohd Noorwadi Mat Lazim, Saadiah Sulaiman
    MyJurnal
    A safety evaluation test on human for latex films made from Radiation Prevulcanized Natural Rubber Latex (RVNRL) with sulfur-containing antioxidant was studied. Sulfur test has confirmed that there was sulfur compound presence in RVNRL derived from antioxidant used in this study. Two types of safety evaluation test were being adopted which are Patch Test and Modified Draize-95 test and this test proved that there is no clinical evidence on the presence of sulfur compound in RVNRL that may induce Type IV allergy in the unsensitized general user population. Both clinical test shows that the highest score value produced by test subjects is 1 and not exceed the allowable limit.
    Matched MeSH terms: Sulfur Compounds
  7. Mahyudin NA, Blunt JW, Cole AL, Munro MH
    J Biomed Biotechnol, 2012;2012:894708.
    PMID: 22291452 DOI: 10.1155/2012/894708
    The application of an HPLC bioactivity profiling/microtiter plate technique in conjunction with microprobe NMR instrumentation and access to the AntiMarin database has led to the isolation of a new 1. In this example, 1 was isolated from a cytotoxic fraction of an extract obtained from marine-derived Streptomyces sp. cultured on Starch Casein Agar (SCA) medium. The 1D and 2D (1)H NMR and ESIMS data obtained from 20 μg of compound 1 fully defined the structure. The known 2 was also isolated and readily dereplicated using this approach.
    Matched MeSH terms: Sulfur Compounds/chemical synthesis; Sulfur Compounds/isolation & purification
  8. Mahmudur Rahman M, Kim KH
    J Hazard Mater, 2012 May 15;215-216:233-42.
    PMID: 22424818 DOI: 10.1016/j.jhazmat.2012.02.055
    A number of offensive odorants including volatile organic compounds (VOCs), reduced sulfur compounds (RSCs), carbonyls, and ammonia were measured along with several reference pollutants (like benzene (B), CS(2), SO(2), CO, and total hydrocarbon (THC)) from combusted fumes of barbecue charcoals produced from five different countries (Korea, China, Indonesia, Malaysia, and the US). Although the emission concentrations of most odorants were generally below the reference guideline set by the malodor prevention law in Korea, the mean concentration of some aldehydes (acetaldehyde, propionaldehyde, and isovaleraldehyde) and ammonia exceeded those guidelines. As such, aldehydes were the most dominant odorant released from charcoal combustion followed by VOC and ammonia. If odorant levels of charcoal products are compared, there are great distinctions between the products of different countries. If comparison is made using the concept of the sum of odor intensity (SOI), the magnitude of SOI for the charcoal products from the five different countries varied in the order of 4.30 (Korea), 3.10 (Indonesia), 2.97 (China), 2.76 (Malaysia), and 2.76 (the US).
    Matched MeSH terms: Sulfur Compounds/analysis
  9. Harun S, Abdullah-Zawawi MR, A-Rahman MRA, Muhammad NAN, Mohamed-Hussein ZA
    Database (Oxford), 2019 01 01;2019.
    PMID: 30793170 DOI: 10.1093/database/baz021
    Plants produce a wide range of secondary metabolites that play important roles in plant defense and immunity, their interaction with the environment and symbiotic associations. Sulfur-containing compounds (SCCs) are a group of important secondary metabolites produced in members of the Brassicales order. SCCs constitute various groups of phytochemicals, but not much is known about them. Findings from previous studies on SCCs were scattered in published literatures, hence SuCComBase was developed to store all molecular information related to the biosynthesis of SCCs. Information that includes genes, proteins and compounds that are involved in the SCC biosynthetic pathway was manually identified from databases and published scientific literatures. Sets of co-expression data was analyzed to search for other possible (previously unknown) genes that might be involved in the biosynthesis of SCC. These genes were named as potential SCC-related encoding genes. A total of 147 known and 92 putative Arabidopsis thaliana SCC-related genes from literatures were used to identify other potential SCC-related encoding genes. We identified 778 potential SCC-related encoding genes, 4026 homologs to the SCC-related encoding genes and 116 SCCs as shown on SuCComBase homepage. Data entries are searchable from the Main page, Search, Browse and Datasets tabs. Users can easily download all data stored in SuCComBase. All publications related to SCCs are also indexed in SuCComBase, which is currently the first and only database dedicated to plant SCCs. SuCComBase aims to become a manually curated and au fait knowledge-based repository for plant SCCs.
    Matched MeSH terms: Sulfur Compounds/metabolism*
  10. Bera H, Ojha Pk, Tan BJ, Sun L, Dolzhenko AV, Chui WK, et al.
    Eur J Med Chem, 2014 May 6;78:294-303.
    PMID: 24686016 DOI: 10.1016/j.ejmech.2014.03.063
    In our drug discovery program, a series of 2-thioxo-pyrazolo[1,5-a][1,3,5]triazin-4-ones were designed, synthesized and evaluated for their TP inhibitory potential. All the synthesized analogues conferred a varying degree of TP inhibitory activity, comparable or better than positive control, 7-deazaxanthine (7-DX, 2) (IC50 value = 42.63 μM). A systematic approach to the lead optimization identified compounds 3c and 4a as the most promising TP inhibitors, exhibiting mixed mode of enzyme inhibition. Moreover, selected compounds demonstrated the ability to attenuate the expression of the angiogenic markers (viz. MMP-9 and VEGF) in MDA-MB-231 cells at sublethal concentrations. In addition, molecular docking studies revealed the plausible binding orientation of these inhibitors towards TP, which was in accordance with the experimental results. Taken as a whole, these compounds would constitute a new direction for the design of novel TP inhibitors with promising antiangiogenic properties.
    Matched MeSH terms: Sulfur Compounds/chemical synthesis; Sulfur Compounds/pharmacology*; Sulfur Compounds/chemistry
  11. Lim XB, Ong WJ
    Nanoscale Horiz, 2021 May 21.
    PMID: 34018529 DOI: 10.1039/d1nh00127b
    The ceaseless increase of pollution cases due to the tremendous consumption of fossil fuels has steered the world towards an environmental crisis and necessitated urgency to curtail noxious sulfur oxide emissions. Since the world is moving toward green chemistry, a fuel desulfurization process driven by clean technology is of paramount significance in the field of environmental remediation. Among the novel desulfurization techniques, the oxidative desulfurization (ODS) process has been intensively studied and is highlighted as the rising star to effectuate sulfur-free fuels due to its mild reaction conditions and remarkable desulfurization performances in the past decade. This critical review emphasizes the latest advances in thermal catalytic ODS and photocatalytic ODS related to the design and synthesis routes of myriad materials. This encompasses the engineering of metal oxides, ionic liquids, deep eutectic solvents, polyoxometalates, metal-organic frameworks, metal-free materials and their hybrids in the customization of advantageous properties in terms of morphology, topography, composition and electronic states. The essential connection between catalyst characteristics and performances in ODS will be critically discussed along with corresponding reaction mechanisms to provide thorough insight for shaping future research directions. The impacts of oxidant type, solvent type, temperature and other pivotal factors on the effectiveness of ODS are outlined. Finally, a summary of confronted challenges and future outlooks in the journey to ODS application is presented.
    Matched MeSH terms: Sulfur Compounds
  12. Jiun IL, Siddik SN, Malik SN, Tin-Oo MM, Alam MK, Khan MM
    Oral Health Prev Dent, 2015;13(5):395-405.
    PMID: 25789356 DOI: 10.3290/j.ohpd.a33920
    PURPOSE: To study the association of smoking with poor oral hygiene status and halitosis in a comparative cross-sectional study.

    MATERIALS AND METHODS: 100 smokers and 100 nonsmokers ages 18-50 years were recruited for this study in Kota Bharu, Malaysia. Oral hygiene (good/fair vs poor) was determined using the Simplified Oral Hygiene Index, and the halitosis level was measured using a Halimeter. Subjects were instructed to refrain from consuming foods containing garlic, onions, strong spices, alcohol and using mouthwashes 48 h prior to the examination. The halitosis levels were quantified by recording volatile sulphur compounds (VSCs) three times at 3-min intervals, resulting in a mean halitosis score. Various statistical analyses were performed, ranging from simple frequency analysis to multivariable modelling.

    RESULTS: The proportions of subjects with poor oral hygiene and high halitosis were 24.0% and 41.5%, respectively. According to bivariate analyses, both problems were significantly less frequent among younger adults (halitosis), females, subjects with higher education, those with adequate habits to maintain good oral hygiene, those who had recent dental visits and those self-reporting fewer health problems. The percentages of poor oral hygiene and high halitosis were significantly higher in smokers (p < 0.001). However, almost all these variables failed to show significance in the multivariate analyses, with the exceptions of smoking for both poor oral hygiene and halitosis, education for poor oral hygiene, and age, self-reported health problems and time since the previous dental visit for halitosis.

    CONCLUSION: These findings demonstrate a significantly higher level of halitosis and poorer oral hygiene in smokers than nonsmokers.

    Matched MeSH terms: Sulfur Compounds/analysis
  13. Subramanian MS, Nandagopal Ms G, Amin Nordin S, Thilakavathy K, Joseph N
    Molecules, 2020 Sep 09;25(18).
    PMID: 32916777 DOI: 10.3390/molecules25184111
    Allium sativum (garlic) is widely known and is consumed as a natural prophylactic worldwide. It produces more than 200 identified chemical compounds, with more than 20 different kinds of sulfide compounds. The sulfide compounds particularly are proven to contribute to its various biological roles and pharmacological properties such as antimicrobial, antithrombotic, hypoglycemic, antitumour, and hypolipidemic. Therefore, it is often referred as disease-preventive food. Sulphur-containing compounds from A. sativum are derivatives of S-alkenyl-l-cysteine sulfoxides, ajoene molecules, thiosulfinates, sulfides, and S-allylcysteine. This review presents an overview of the water-soluble and oil-soluble sulphur based phytochemical compounds present in garlic, highlighting their mechanism of action in treating various health conditions. However, its role as a therapeutic agent should be extensively studied as it depends on factors such as the effective dosage and the suitable method of preparation.
    Matched MeSH terms: Sulfur Compounds/chemistry*
  14. Sekine M, Akizuki S, Kishi M, Kurosawa N, Toda T
    Chemosphere, 2020 Apr;244:125381.
    PMID: 31805460 DOI: 10.1016/j.chemosphere.2019.125381
    Sulfide inhibition to nitrifying bacteria has prevented the integration of digestate nitrification and biogas desulfurization to simplify anaerobic digestion systems. In this study, liquid digestate with NaHS solution was treated using nitrifying sludge in a sequential-batch reactor with a long fill period, with an ammonium loading rate of 293 mg-N L-1 d-1 and a stepwise increase in the sulfide loading rate from 0 to 32, 64, 128, and 256 mg-S L-1 d-1. Batch bioassays and microbial community analysis were also conducted with reactor sludge under each sulfide loading rate to quantify the microbial acclimatization to sulfide. In the reactor, sulfide was completely removed. Complete nitrification was maintained up to a sulfide load of 128 mg-S L-1 d-1, which is higher than that in previous reports and sufficient for biogas treatment. In the batch bioassays, the sulfide tolerance of NH4+ oxidizing activity (the 50% inhibitory sulfide concentration) increased fourfold over time with the compositional shift of nitrifying bacteria to Nitrosomonas nitrosa and Nitrobacter spp. However, the sulfur removal rate of the sludge slightly decreased, although the abundance of the sulfur-oxidizing bacteria Hyphomicrobium increased by 30%. Therefore, nitrifying sludge was probably acclimatized to sulfide not by the increasing sulfide removal rate but rather by the increasing nitrifying bacteria, which have high sulfide tolerance. Successful simultaneous nitrification and desulfurization were achieved using a sequential-batch reactor with a long fill period, which was effective in facilitating the present acclimatization.
    Matched MeSH terms: Sulfur Compounds
  15. Wiart C, Shorna AA, Rahmatullah M, Nissapatorn V, Seelan JSS, Rahman H, et al.
    Molecules, 2023 Jul 28;28(15).
    PMID: 37570687 DOI: 10.3390/molecules28155717
    Scorodocarpus borneensis (Baill.) Becc. is attracting increased attention as a potential commercial medicinal plant product in Southeast Asia. This review summarizes the current knowledge on the taxonomy, habitat, distribution, medicinal uses, natural products, pharmacology, toxicology, and potential utilization of S. borneesis in the pharmaceutical/nutraceutical/functional cosmetic industries. All data in this review were compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem, and a library search from 1866 to 2022. A total of 33 natural products have been identified, of which 11 were organosulfur compounds. The main organosulfur compound in the seeds is bis-(methylthiomethyl)disulfide, which inhibited the growth of a broad spectrum of bacteria and fungi, T-lymphoblastic leukemia cells, as well as platelet aggregation. Organic extracts evoked anti-microbial, cytotoxic, anti-free radical, and termiticidal effects. S. borneensis and its natural products have important and potentially patentable pharmacological properties. In particular, the seeds have the potential to be used as a source of food preservatives, antiseptics, or termiticides. However, there is a need to establish acute and chronic toxicity, to examine in vivo pharmacological effects and to perform clinical studies.
    Matched MeSH terms: Sulfur Compounds
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links