The gastrointestinal (GI) transit behavior of and absorption from an amphotericin B (AmB) solid lipid nanoformulation (SLN) in rats was investigated. We aimed to estimate the gastric emptying time (GET) and cecal arrival time (CAT) of AmB SLN in rats as animal models. From these two parameters, an insight on the absorption window of AmB was ascertained. Three types of SLNs, AmB, paracetamol (PAR), and sulfasalazine (SSZ), were similarly formulated using beeswax/theobroma oil composite as the lipid matrix and characterized with regard to size, viscosity, density, migration propensity within agarose gel, in vitro drug release, morphology, gastrointestinal transit, and in vivo absorption. The GET and CAT were estimated indirectly using marker drugs: PAR and sulfapyridine (SP). All three types of SLNs exhibited identical properties with regard to z-average, viscosity, relative density, and propensity to migrate. PAR was absorbed rapidly from the small intestine following emptying of the SLNs giving the T50E (time for 50% absorption of PAR) to be 1.6 h. SP was absorbed after release and microbial degradation of SSZ from SLN in the colon with a lag time of 2 h post-administration, serving as the estimated cecal arrival time of the SLNs. AmB within SLN was favorably absorbed from the small intestine, albeit slowly.
A new species of the portunid genus, Monomia Gistel, 1848, is described from the South China Sea in Vietnam. Monomia lucida sp. nov. is morphologically most similar to M. argentata (A. Milne-Edwards, 1861), which was originally described from Sarawak, on the island of Borneo. In addition to the stout, forward-directed anterolateral teeth of the carapace, the subrectangular sixth segment of the male pleon, and the long and slender laterally bent first gonopods, adults of the new species reach a greater size, and can also be distinguished from M. argentata by the colour pattern on the natatory dactylus. The independent specific status of M. lucida sp. nov. is also supported by molecular evidence. Aside from a comparison of this new species with other known congeners, new photographs of the holotype of M. samoensis (Ward, 1939) are also provided.
The taxonomy of freshwater crabs requires a paradigm change in methodological approaches, particularly in investigations that use morphological techniques. The traditional morphometric approach (two-dimensional measurements) tends to be inappropriate for the identification of freshwater crabs due to their variable external morphology and lack of gonopods (conventionally used for the identification of male crabs) in females. In this study, we explore the potential use of the geometric morphometric technique for identification of female freshwater crabs, and identify taxonomic key characteristics of species. The shape of the carapace could be a good characteristic for the identification of female crabs, especially when the geometric morphometric technique is used. It was observed that the shape of the carapace has an advantage over the shape of the pleon and chela because its relatively flat orientation allows more consistent and easier data preparation for geometric morphometric analysis. The geometric morphometric technique is inexpensive, relatively less time consuming to employ, and accurate. This technique is convenient when dissection to examine the gonopods is not possible, which can damage the specimen in the case of endangered or rare species. Since the technique was used herein for only two species, more compelling and extensive evidence is needed before the reliability of the method can be proven.
Thus far, associations between the presence of systemic rheumatic disease and an increased risk of novel coronavirus disease 2019 (COVID-19) acquisition or a worse prognosis from COVID-19 have not been conclusive. It is not known for certain if there is an association between any pharmacological agent used for rheumatologic treatment, including biological and non-biological disease-modifying antirheumatic drugs (DMARDs), and an increased risk of COVID-19 acquisition or adverse outcomes from COVID-19, although these agents have been associated with an overall higher risk of infections. The pharmacological management of patients with a rheumatic disease without COVID-19 should currently follow usual treatment approaches. Individualized approaches to adjusting DMARD regimens in patients with documented COVID-19 seems prudent, with specific attention paid to the severity of the infection. Patients receiving antimalarials (hydroxychloroquine/chloroquine) may continue treatment with these agents. Treatment with sulfasalazine, methotrexate, leflunomide, immunosuppressants and biological agents other than interluekin-6 receptor inhibitors and JAK inhibitors should be stopped or withheld. It should be reasonable to resume DMARD treatment when patients are no longer symptomatic and at least 2 weeks after documentation of COVID-19, although the decision should be individualized, preferably based on infection severity.