A novel technique has been introduced in this research which lends its basis to the Directional Slack-Based Measure for the inverse Data Envelopment Analysis. In practice, the current research endeavors to elucidate the inverse directional slack-based measure model within a new production possibility set. On one occasion, there is a modification imposed on the output (input) quantities of an efficient decision making unit. In detail, the efficient decision making unit in this method was omitted from the present production possibility set but substituted by the considered efficient decision making unit while its input and output quantities were subsequently modified. The efficiency score of the entire DMUs will be retained in this approach. Also, there would be an improvement in the efficiency score. The proposed approach was investigated in this study with reference to a resource allocation problem. It is possible to simultaneously consider any upsurges (declines) of certain outputs associated with the efficient decision making unit. The significance of the represented model is accentuated by presenting numerical examples.
Radio frequency identification (RFID) systems are emerging as the primary object identification mechanism, especially in supply chain management. However, RFID naturally generates a large amount of duplicate readings. Removing these duplicates from the RFID data stream is paramount as it does not contribute new information to the system and wastes system resources. Existing approaches to deal with this problem cannot fulfill the real time demands to process the massive RFID data stream. We propose a data filtering approach that efficiently detects and removes duplicate readings from RFID data streams. Experimental results show that the proposed approach offers a significant improvement as compared to the existing approaches.
Recent years have witnessed a growing interest in deploying large populations of microsensors that collaborate in a distributed manner to gather and process sensory data and deliver them to a sink node through wireless communications systems. Currently, there is a lot of interest in data routing for Wireless Sensor Networks (WSNs) due to their unique challenges compared to conventional routing in wired networks. In WSNs, each data routing approach follows a specific goal (goals) according to the application. Although the general goal of every data routing approach in WSNs is to extend the network lifetime and every approach should be aware of the energy level of the nodes, data routing approaches may focus on one (or some) specific goal(s) depending on the application. Thus, existing approaches can be categorized according to their routing goals. In this paper, the main goals of data routing approaches in sensor networks are described. Then, the best known and most recent data routing approaches in WSNs are classified and studied according to their specific goals.