Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Lowe BG
    Health Phys, 1976 Mar;30(3):302-3.
    PMID: 1254481
    Matched MeSH terms: Soil Pollutants, Radioactive/analysis
  2. Lee SK, Wagiran H, Ramli AT
    Radiat Prot Dosimetry, 2014 Dec;162(3):345-50.
    PMID: 24214911 DOI: 10.1093/rpd/nct273
    The objective of this study was to determine the gross alpha and gross beta activity concentrations from the different soil types found in the Kinta District, Perak, Malaysia. A total of 128 soil samples were collected and their dose rates were measured 1 m above the ground. Gross alpha and gross beta activity measurements were carried out using gas flow proportional counter, Tennelec Series 5 LB5500 Automatic Low Background Counting System. The alpha activity concentration ranged from 15 to 9634 Bq kg(-1) with a mean value of 1558±121 Bq kg(-1). The beta activity concentration ranged from 142 to 6173 Bq kg(-1) with a mean value of 1112±32 Bq kg(-1). High alpha and beta activity concentrations are from the same soil type. The results of the analysis show a strong correlation between the gross alpha activity concentration and dose rate (R = 0.92). The data obtained can be used as a database for each soil type.
    Matched MeSH terms: Soil Pollutants, Radioactive/analysis*
  3. Almayahi BA, Tajuddin AA, Jaafar MS
    Appl Radiat Isot, 2012 Nov;70(11):2652-60.
    PMID: 22982603 DOI: 10.1016/j.apradiso.2012.07.021
    The radioactivity quantity and quality were determined in soil and water samples in Northern Malaysian Peninsula (NMP) using HPGe spectroscopy and GR-135 spectrometer. The (226)Ra, (232)Th and (40)K concentrations in soil samples are 57±2, 68±4 and 427±17 Bq kg(-1), respectively, whereas in water samples were found to be 2.86±0.79, 3.78±1.73 and 152±12 Bq l(-1), respectively. These concentrations are within those reported from literature in other countries in the world. The radiological hazard indices of the samples were also calculated. The mean values obtained from soil samples are 186 Bq kg(-1), 88 nGy h(-1), 108 μSv y(-1), 0.50 and 0.65 for Radium Equivalent Activity (Ra(eq)), Absorbed Dose Rates (D(R)), Annual Effective Dose Rates (ED), External Hazard Index (H(ex)) and Internal Hazard Index (H(in)) respectively, whereas, for water samples were found to be 20, 10, 13, 0.05 and 0.06, respectively. All the health hazard indices are well below their recommended limits, except in two soil sampling sites which were found to be (*)025 (1.1 H(ex)) and (*)026 (1.1 H(ex), 1.6 H(in)). The calculated and the measured gamma dose rates had a good correlation coefficient, R=0.88. Moreover, the average value radon is 20 (in the range of 7-64) Bq m(-3), a positive correlation (R=0.81) was observed between the (222)Rn and (226)Ra concentrations in samples measured by the SNC continuous radon monitor (model 1029, Sun Nuclear Corporation) and HPGe detector, respectively. Some soils in this study with H(in) and H(ex)<1 are suitable for use in agriculture and as building materials. Also, in this study H(in) and H(ex)<1 for water samples, therefore, water after processing and filtration is safe and suitable for use in household and industrial purposes.
    Matched MeSH terms: Soil Pollutants, Radioactive/analysis*
  4. Gabdo HT, Ramli AT, Saleh MA, Garba NN, Sanusi M
    Isotopes Environ Health Stud, 2016 Jun;52(3):298-308.
    PMID: 26999725 DOI: 10.1080/10256016.2016.1128428
    This study was aimed at providing the baseline data of terrestrial gamma dose rates and natural radioactivity to assess the corresponding health risk in the ambient environment of the Pahang State. Terrestrial gamma radiation (TGR) from 640 locations was measured with the mean value found to be 176 ± 5 nGy h(-1). Ninety-eight soil samples were analysed using a high-purity germanium detector (HPGe), and the mean concentrations of the radionuclides (226)Ra, (232)Th and (40)K are 110 ± 3, 151 ± 5 and 542 ± 51 Bq kg(-1), respectively.(226)Ra and (232)Th concentrations were found to be three times the world average, while that of (40)K is quite higher than the world average value. The acid-intrusive geological formation has the highest mean concentrations for (226)Ra (215 ± 6 Bq kg(-1)), (232)Th (384 ± 12 Bq kg(-1)) and (40)K (1564 ± 153 Bq kg(-1)). The radium equivalent activities (Req) and the external hazard index (Hex) for the various soil types were also calculated. Some of the soil types were found to have values exceeding the internationally recommended levels of 370 Bq kg(-1) and the unity value, respectively.
    Matched MeSH terms: Soil Pollutants, Radioactive/analysis*
  5. Aliyu AS, Ibrahim U, Akpa CT, Garba NN, Ramli AT
    Isotopes Environ Health Stud, 2015;51(3):448-68.
    PMID: 25848858 DOI: 10.1080/10256016.2015.1026339
    Nasarawa State is located in north central Nigeria and it is known as Nigeria's home of solid minerals. It is endowed with barite, copper, zinc, tantalite and granite. Continuous releases of mining waste and tailings into the biosphere may result in a build-up of radionuclides in air, water and soil. This work therefore aims to measure the activity concentration levels of primordial radionuclides in the soil/sediment samples collected from selected mines of the mining areas of Nasarawa State. The paper also assesses the radiological and radio ecological impacts of mining activities on the residents of mining areas and their environment. The activity concentrations of primordial radionuclides ((226)Ra, (232)Th and (40)K) in the surface soils/sediment samples were determined using sodium iodide-thallium gamma spectroscopy. Seven major mines were considered with 21 samples taken from each of the mines for radiochemistry analysis. The human health hazard assessment was conducted using regulatory methodologies set by the United Nations Scientific Committee on the Effects of Atomic Radiation, while the radio ecological impact assessment was conducted using the ERICA tool v. 1.2. The result shows that the activity concentrations of (40)K in the water ways of the Akiri copper and the Azara barite mines are 60 and 67% higher than the world average value for (40)K, respectively. In all mines, the annual effective dose rates (mSv y(-1)) were less than unity, and a maximum annual gonadal dose of 0.58 mSv y(-1) is received at the Akiri copper mine, which is almost twice the world average value for gonadal dose. The external hazard indices for all the mines were less than unity. Our results also show that mollusc-gastropod, insect larvae, mollusc-bivalve and zooplankton are the freshwater biotas with the highest dose rates ranging from 5 to 7 µGy h(-1). These higher dose rates could be associated with zinc and copper mining at Abuni and Akiri, respectively. The most exposed terrestrial reference organisms are lichen and bryophytes. In all cases, the radio ecological risks are not likely to be discernible. This paper presents a pioneer data for ecological risk from ionizing contaminants due to mining activity in Nasarawa State, Nigeria. Its methodology could be adopted for future work on radioecology of mining.
    Matched MeSH terms: Soil Pollutants, Radioactive/analysis*
  6. Nakao A, Tomita M, Wagai R, Tanaka R, Yanai J, Kosaki T
    J Environ Radioact, 2019 Aug;204:86-94.
    PMID: 30986719 DOI: 10.1016/j.jenvrad.2019.03.028
    Radiocesium (RCs) is selectively adsorbed on interlayer sites of weathered micaceous minerals, which can reduce the mobility of RCs in soil. Therefore, soils developed from mica-deficient materials (e.g. serpentine soils) may have a higher risk of soil-to-plant transfer of RCs. Soils were collected from three serpentine soil profiles; Udepts in Oeyama, Japan, and Udepts and Udox in Kinabalu, Malaysia. Soil was sampled every 3 cm from 0 to 30 cm depth and sieved to isolate soil particles of ≤20 μm diameter for the assessment of radiocesium interception potential (RIP) after a series of pretreatments. One subset was treated with H2O2 to remove organic matter (OM). Another subset was further treated with hot sodium citrate to remove hydroxy-Al polymers (Al(OH)x). RIPuntreated was <0.4 mol kg-1 whereas mica-K content was <0.02% by weight for ≤20-μm soil particles from Udepts and Udox in Kinabalu, Malaysia, values as low as those of non-micaceous minerals (e.g. kaolinite and smectite). Neither OM nor Al(OH)x removal resulted in a large increase in RIP value for these soils. These results clearly indicated that serpentine soils in Malaysia have very few RCs selective adsorption sites due to the absence of micaceous minerals. In contrast, soil from Udepts in Oeyama, Japan showed average RIPuntreated of 5.6 mol kg-1 and mica-K content of 0.72% by weight for the ≤20-μm particles. Furthermore, the RIP value was significantly increased to an average of 22.5 mol kg-1 after removing both OM and Al(OH)x. These results strongly suggest that weathered micaceous minerals primarily control the ability to retain RCs. These micaceous minerals cannot originate from serpentine minerals, and are probably incorporated as an exotic material, such as Asian dust. This hypothesis is supported by the δ18O value of quartz isolated from the ≤20-μm soil particles from Oeyama, Japan (+16.13‰±0.11‰), very similar to that of Asian dust. In conclusion, serpentine soils in Japan may exhibit a reduced risk of soil-to-plant transfer of RCs due to the historical deposition of Asian dust.
    Matched MeSH terms: Soil Pollutants, Radioactive/analysis*
  7. Alzubaidi G, Hamid FB, Abdul Rahman I
    ScientificWorldJournal, 2016;2016:6178103.
    PMID: 27965987
    The activity concentrations of naturally occurring radionuclides (226)Ra, (232)Th, and (40)K were determined in 30 agricultural and virgin soil samples randomly collected from Kedah, north of Malaysia, at a fertile soil depth of 0-30 cm. Gamma-ray spectrometry was applied using high-purity germanium (HPGe) gamma-ray detector and a PC-based MCA. The mean radioactivity concentrations of (226)Ra, (232)Th, and (40)K were found to be 102.08 ± 3.96, 133.96 ± 2.92, and 325.87 ± 9.83 Bq kg(-1), respectively, in agricultural soils and 65.24 ± 2.00, 83.39 ± 2.27, and 136.98 ± 9.76 Bq kg(-1), respectively, in virgin soils. The radioactivity concentrations in agricultural soils are higher than those in virgin soils and compared with those reported in other countries. The mean values of radium equivalent activity (Raeq), absorbed dose rates D (nGy h(-1)), annual effective dose equivalent, and external hazard index (Hex) are 458.785 Bq kg(-1), 141.62 nGy h(-1), and 0.169 mSv y(-1), respectively, in agricultural soils and 214.293 Bq kg(-1), 87.47 nGy h(-1), and 0.106 mSv y(-1), respectively, in virgin soils, with average Hex of 0.525. Results were discussed and compared with those reported in similar studies and with internationally recommended values.
    Matched MeSH terms: Soil Pollutants, Radioactive/analysis*
  8. Lowe BG
    Health Phys, 1978 May;34(5):439-44.
    PMID: 568609
    Matched MeSH terms: Soil Pollutants, Radioactive/analysis*
  9. Nuhu H, Hashim S, Aziz Saleh M, Syazwan Mohd Sanusi M, Hussein Alomari A, Jamal MH, et al.
    PLoS One, 2021;16(7):e0254099.
    PMID: 34320010 DOI: 10.1371/journal.pone.0254099
    In this study geogenic radon potential (GRP) mapping was carried out on the bases of field radon in soil gas concentration and soil gas permeability measurements by considering the corresponding geological formations. The spatial pattern of soil gas radon concentration, soil permeability, and GRP and the relationship between geological formations and these parameters was studied by performing detailed spatial analysis. The radon activity concentration in soil gas ranged from 0.11 to 434.5 kBq m-3 with a mean of 18.96 kBq m-3, and a standard deviation was 55.38 kBq m-3. The soil gas permeability ranged from 5.2×10-14 to 5.2×10-12 m2, with a mean of 5.65×10-13 m2. The GRP values were computed from the 222Rn activity concentration and soil gas permeability data. The range of GRP values was from 0.04 to 154.08. Locations on igneous granite rock geology were characterized by higher soil radon gas activity and higher GRP, making them radon-prone areas according to international standards. The other study locations fall between the low to medium risk, except for areas with high soil permeability, which are not internationally classified as radon prone. A GRP map was created displaying radon-prone areas for the study location using Kriging/Cokriging, based on in situ and predicted measured values. The GRP map assists in human health risk assessment and risk reduction since it indicates the potential of the source of radon and can serve as a vital tool for radon combat planning.
    Matched MeSH terms: Soil Pollutants, Radioactive/analysis
  10. Salih NF, Jafri ZM, Jaafar MS
    Environ Sci Pollut Res Int, 2016 Dec;23(23):23662-23674.
    PMID: 27619370
    This study was carried out to determine the concentration of (222)Rn, (226)Ra, and (238)U in 25 different toothpastes available in the local market in Penang, Malaysia, using a CR-39 detector. The results showed the maximum concentration of radon/ radium/uranium to be 4197.644 Bq.m(-3), 54.369 Bq.Kgm(-1), and 0.044 ppm in Colgate4; the annual effective dose was found (0.402 mSvy(-1)) in S07. The average concentration of radon (42 %, 3.224 KBq.m(-3)) was higher than the concentration of (214)Po, (218)Po in POS (32 %, 2.415 KBq.m(-3)) and POW (26 %, 1.979 KBq.m(-3)). Also the values of pH of samples ranged from 4.21 (highly acidic) in S04 to 9.97 (highly basic) in S07, with an average of 6.33 which tended towards an acidic behavior; a low or high pH for a long period of time can cause harmful side-effects and enamel erosion. Concentrations of heavy metals varied from the maximum value 56.156 ppm in the Ca elements in the Colgate 4 sample to a minimum value of -0.858 ppm in the Cd elements in Colgate 6 (Ca 56.156 ppm > Cd 51.572 ppm > Zn 41.039 ppm > Mg 11.682 ppm > Pb 11.009 ppm]. Monitoring the accumulation of these metals in toothpaste samples is very important: the average annual effective dose (0.3118 mSvy(-1)) was below the range (3-10 mSvy(-1)) reported by ICRP (1993), and therefore there is no evidence of health problems. Significant strong positive correlations were found (r = 1, Pearson correlation, p 
    Matched MeSH terms: Soil Pollutants, Radioactive/analysis*
  11. Hanfi MYM, Masoud MS, Sayyed MI, Khandaker MU, Faruque MRI, Bradley DA, et al.
    PLoS One, 2021;16(3):e0249329.
    PMID: 33788889 DOI: 10.1371/journal.pone.0249329
    Uranium, perhaps the most strategically important component of heavy minerals, finds particular significance in the nuclear industry. In prospecting trenches, the radioactivity of 238U and 232Th provides a good signature of the presence of heavy minerals. In the work herein, the activity concentrations of several key primordial radionuclides (238U, 232Th, and 40K) were measured in prospecting trenches (each of the latter being of approximately the same geometry and physical situation). All of these are located in the Seila area of the South Eastern desert of Egypt. A recently introduced industry standard, the portable hand-held RS-230 BGO gamma-ray spectrometer (1024 channels) was employed in the study. Based on the measured data, the trenches were classified as either non-regulated (U activity less than 1000 Bq kg-1) or regulated (with 238U activity more than 1000 Bq kg-1). Several radiological hazard parameters were calculated, statistical analysis also being performed to examine correlations between the origins of the radionuclides and their influence on the calculated values. While the radioactivity and hazard parameters exceed United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) guided limits, the mean annual effective doses of 0.49 and 1.4 mSv y-1 in non-regulated and regulated trenches respectively remain well below the International Commission on Radiological Protection (ICRP) recommended 20 mSv/y maximum occupational limit. This investigation reveals that the studied area contains high uranium content, suitable for extraction of U-minerals for use in the nuclear fuel cycle.
    Matched MeSH terms: Soil Pollutants, Radioactive/analysis*
  12. Aziz Saleh M, Termizi Ramli A, Alajerami Y, Damoom M, Sadiq Aliyu A
    Isotopes Environ Health Stud, 2014;50(1):103-13.
    PMID: 24279290 DOI: 10.1080/10256016.2013.821469
    The radiation survey of the ambient environment was conducted using two gamma detectors, and the measurement results were used in the computation of the mean external radiation dose rate, mean-weighted dose rate and annual effective dose, which are 144 nGy h(-1), 0.891 mSv y(-1) and 178 μSv, respectively. A high-purity germanium detector was used to determine the activity concentrations of (232)Th, (226)Ra and (40)K in soil samples. The results of the gamma spectrometry of the soil samples show radioactivity concentration ranges from 19±1 to 405±13 Bq kg(-1) with a mean value of 137±5 Bq kg(-1) for (232)Th, from 21±2 to 268±9 Bq kg(-1)with a mean value of 78±3 Bq kg(-1) for (226)Ra and from 23±9 to 1268±58 Bq kg(-1) with a mean value of 207±13 Bq kg(-1) for (40)K. Radium equivalent activity (Raeq) and external hazard index (Hex) were 290 Bq kg(-1) and 0.784, respectively, which were safe for the population. The mean lifetime dose and lifetime cancer risk for each person living in the area with average lifetime (70 y) were 12.46 mSv and 7.25×10(-4) Sv year, respectively. The results were compared with values given in United Nations Scientific Committee on the Effects of Atomic Radiation 2000.
    Matched MeSH terms: Soil Pollutants, Radioactive/analysis
  13. Alnour IA, Wagiran H, Ibrahim N, Hamzah S, Elias MS, Laili Z, et al.
    Radiat Prot Dosimetry, 2014 Jan;158(2):201-7.
    PMID: 23965286 DOI: 10.1093/rpd/nct206
    The distribution of natural radionuclides ((238)U, (232)Th and (40)K) and their radiological hazard effect in rocks collected from the state of Johor, Malaysia were determined by gamma spectroscopy using a high-purity germanium detector. The highest values of (238)U, (232)Th and (40)K activity concentrations (67±6, 85±7 and 722±18 Bg kg(-1), respectively) were observed in the granite rock. The lowest concentrations of (238)U and (232)Th (2±0.1 Bq kg(-1) for (238)U and 2±0.1 Bq kg(-1) for (232)Th) were observed in gabbro rock. The lowest concentration of (40)K (45±2 Bq kg(-1)) was detected in sandstone. The radium equivalent activity concentrations for all rock samples investigated were lower than the internationally accepted value of 370 Bq kg(-1). The highest value of radium equivalent in the present study (239±17 Bq kg(-1)) was recorded in the area of granite belonging to an acid intrusive rock geological structure. The absorbed dose rate was found to range from 4 to 112 nGy h(-1). The effective dose ranged from 5 to 138 μSv h(-1). The internal and external hazard index values were given in results lower than unity. The purpose of this study is to provide information related to radioactivity background levels and the effects of radiation on residents in the study area under investigation. Moreover, the relationships between the radioactivity levels in the rocks within the geological structure of the studied area are discussed.
    Matched MeSH terms: Soil Pollutants, Radioactive/analysis
  14. Saleh MA, Ramli AT, Alajerami Y, Aliyu AS
    J Environ Radioact, 2013 Oct;124:130-40.
    PMID: 23727880 DOI: 10.1016/j.jenvrad.2013.04.013
    Extensive environmental survey and measurements of gamma radioactivity in the soil samples collected from Segamat District were conducted. Two gamma detectors were used for the measurements of background radiation in the area and the results were used in the computation of the mean external radiation dose rate and mean weighted dose rate, which are 276 nGy h(-1) and 1.169 mSv y(-1), respectively. A high purity germanium (HPGe) detector was used in the assessment of activity concentrations of (232)Th, (226)Ra and (40)K. The results of the gamma spectrometry range from 11 ± 1 to 1210 ± 41 Bq kg(-1) for (232)Th, 12 ± 1 to 968 ± 27 Bq kg(-1) for (226)Ra, and 12 ± 2 to 2450 ± 86 Bq kg(-1) for (40)K. Gross alpha and gross beta activity concentrations range from 170 ± 50 to 4360 ± 170 Bq kg(-1) and 70 ± 20 to 4690 ± 90 Bq kg(-1), respectively. These results were used in the plotting of digital maps (using ARCGIS 9.3) for isodose. The results are compared with values giving in UNSCEAR 2000.
    Matched MeSH terms: Soil Pollutants, Radioactive/analysis*
  15. Maxwell O, Wagiran H, Ibrahim N, Lee SK, Sabri S
    Radiat Prot Dosimetry, 2013 Dec;157(2):271-7.
    PMID: 23754832 DOI: 10.1093/rpd/nct140
    The purpose of this project is to evaluate the suitability of different sites as locations for obtaining underground water for consumption. The analysis of ²³⁸U, ²³²Th and ⁴⁰K from rock samples from each layer of borehole at a depth of ∼50 m at Site A borehole, S3L1-S3L6 in Gosa and 40 m at Site B borehole, S4L1-S4L5 in Lugbe, Abuja, north central Nigeria is presented. The gamma-ray spectrometry was carried out using a high-purity germanium detector coupled to a computer-based high-resolution multichannel analyzer. The activity concentrations at Site A borehole for ²³⁸U have a mean value of 26 ± 3, ranging from 23 ± 2 to 30 ± 3 Bq kg⁻¹, ²³²Th a mean value of 63 ± 5, ranging from 48 ± 4 to 76 ± 6 Bq kg⁻¹ and ⁴⁰K a mean value of 573 ± 72, ranging from 437 ± 56 to 821 ± 60 Bq kg⁻¹. The activity concentrations at Site B borehole for ²³⁸U have a mean value of 20 ± 2, ranging from 16 ± 2 to 23 ± 2 Bq kg⁻¹, ²³²Th a mean value of 46 ± 4, ranging from 43 ± 4 to 49 ± 4 Bq kg⁻¹, ⁴⁰K a mean value of 915 ± 116 and ranging from 817 ± 103 Bq kg⁻¹ to 1011 ± 128 Bq kg⁻¹. It is noted that the higher activity concentrations of ²³²Th and ²³⁸U are found in Site A at Gosa. Site B has lower radioactivity, and it is recommended that both sites are suitable for underground water consumption.
    Matched MeSH terms: Soil Pollutants, Radioactive/analysis*
  16. Lee SK, Wagiran H, Ramli AT, Apriantoro NH, Wood AK
    J Environ Radioact, 2009 May;100(5):368-74.
    PMID: 19299052 DOI: 10.1016/j.jenvrad.2009.01.001
    Natural background gamma radiation and radioactivity concentrations were investigated from 2003 to 2005 in Kinta District, Perak, Malaysia. Sample locations were distant from any 'amang' processing plants. The external gamma dose rates ranged from 39 to 1039 nGy h(-1). The mean external gamma dose rate was 222+/-191 nG yh(-1). Small areas of relatively enhanced activity were located having external gamma dose rates of up to 1039+/-104 nGy h(-1). The activity concentrations of (238)U, (232)Th and (40)K were analyzed by using a high-resolution co-axial HPGe detector system. The activity concentration ranges were 12-426 Bq kg(-1) for (238)U, 19-1377 Bq kg(-1) for (232)Th and <19-2204 Bq kg(-1) for (40)K. Based on the radioactivity levels determined, the gamma-absorbed dose rates in air at 1m above the ground were calculated. The calculated dose rates and measured dose rates had a good correlation coefficient, R of 0.94. To evaluate the radiological hazard of the natural radioactivity, the radium equivalent activity, the gamma-absorbed dose rate and the mean population weighted dose rate were calculated. An isodose map for the Kinta District was also produced.
    Matched MeSH terms: Soil Pollutants, Radioactive/analysis*
  17. Garba NN, Ramli AT, Saleh MA, Sanusi SM, Gabdo HT
    Isotopes Environ Health Stud, 2016 Jun;52(3):214-8.
    PMID: 26540360 DOI: 10.1080/10256016.2016.1095189
    Measurements of the environmental terrestrial gamma radiation dose rate (TGRD) in each district of Kelantan state, Malaysia, were carried out using a portable hand-held radiation survey meter and global positioning system. The measurements were done based on geology and soil types of the area. The mean TGRD was found to be 209 nGy h(-1). Few areas of relatively enhanced activity were observed in Pasir Mas, Tanah Merah and Jeli districts, which have a mean TGRD between 300 and 500 nGy h(-1). An isodose map of the area was produced using ArcGIS software version 9.3.
    Matched MeSH terms: Soil Pollutants, Radioactive/analysis
  18. Saleh MA, Ramli AT, bin Hamzah K, Alajerami Y, Moharib M, Saeed I
    J Environ Radioact, 2015 Oct;148:111-22.
    PMID: 26142818 DOI: 10.1016/j.jenvrad.2015.05.019
    This study aims to predict and estimate unmeasured terrestrial gamma dose rate (TGDR) using statistical analysis methods to derive a model from the actual measurement based on geological formation and soil type. The measurements of TGDR were conducted in the state of Johor with a total of 3873 measured points which covered all geological formations, soil types and districts. The measurements were taken 1 m above the soil surface using NaI [Ti] detector. The measured gamma dose rates ranged from 9 nGy h(-1) to 1237 nGy h(-1) with a mean value of 151 nGy h(-1). The data have been normalized to fit a normal distribution. Tests of significance were conducted among all geological formations and soil types, using the unbalanced one way ANOVA. The results indicated strong significant differences due to the different geological formations and soil types present in Johor State. Pearson Correlation was used to measure the relations between gamma dose rate based on geological formation and soil type (D(G,S)) with the gamma dose rate based on geological formation (D(G)) or soil type (D(s)). A very good correlation was found between D(G,S) and D(G) or D(G,S) and D(s). A total of 118 pairs of geological formations and soil types were used to derive the statistical contribution of geological formations and soil types to gamma dose rates. The contribution of the gamma dose rate from geological formation and soil type were found to be 0.594 and 0.399, respectively. The null hypotheses were accepted for 83% of examined data, therefore, the model could be used to predict gamma dose rates based on geological formation and soil type information.
    Matched MeSH terms: Soil Pollutants, Radioactive/analysis*
  19. Ramli AT, Hussein AW, Lee MH
    Appl Radiat Isot, 2001 Feb;54(2):327-33.
    PMID: 11200896
    Measurements of environmental terrestrial gamma radiation dose-rate (TGRD) have been made in Johore, Malaysia. The focus is on determining a relationship between geological type and TGRD levels. Data were compared using the one way analysis of variance (ANOVA), in some instances revealing significant differences between TGRD measurements and the underlying geological structure.
    Matched MeSH terms: Soil Pollutants, Radioactive/analysis
  20. Al Mutairi AMM, Kabir NA
    Radiat Prot Dosimetry, 2020 Jun 12;188(1):47-55.
    PMID: 31711202 DOI: 10.1093/rpd/ncz256
    Tapioca and sweet potato are the fourth and fifth most consumed crops in Malaysia. The activity concentrations of natural radionuclides in these vegetables were assessed from two regions in Malaysia (Kedah and Penang) along with soil samples using gamma ray spectroscopy. The transfer factors of 226Ra, 232Th and 40K from soil to vegetables were calculated, and a dose assessment was performed. The activity concentrations of 226Ra, 232Th and 40K in soil samples did not show a significant variation with the regions investigated, and the average values obtained, in Bq/kg, (±SD) were as follows: 80 ± 41, 56 ± 12, 516 ± 119, respectively. The respective average activity concentrations in vegetables were as follows, in Bq/kg: (±SD) 2.0 ± 0.5, 6 ± 2, 153 ± 49. The corresponding transfer factors were calculated to be 0.03, 0.11 and 0.31 for 226Ra, 232Th and 40K, respectively. The average annual effective doses due to the exposure from soil and ingestion of vegetables were found to lie within the worldwide ranges.
    Matched MeSH terms: Soil Pollutants, Radioactive/analysis*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links