Displaying all 16 publications

Abstract:
Sort:
  1. Paranjothy M
    Med J Malaysia, 1978 Sep;33(1):17-9.
    PMID: 750889
    Matched MeSH terms: Seizures/chemically induced*
  2. Dang J, Paudel YN, Yang X, Ren Q, Zhang S, Ji X, et al.
    ACS Chem Neurosci, 2021 07 07;12(13):2542-2552.
    PMID: 34128378 DOI: 10.1021/acschemneuro.1c00314
    The lack of disease-modifying therapeutic strategies against epileptic seizures has caused a surge in preclinical research focused on exploring and developing novel therapeutic candidates for epilepsy. Compounds from traditional Chinese medicines (TCMs) have gained much attention for a plethora of neurological diseases, including epilepsy. Herein, for the first time, we evaluated the anticonvulsive effects of schaftoside (SS), a TCM, on pentylenetetrazol (PTZ)-induced epileptic seizures in zebrafish and examined the underlying mechanisms. We observed that SS pretreatments significantly suppressed seizure-like behavior and prolonged the onset of seizures. Zebrafish larvae pretreated with SS demonstrated downregulation of c-fos expression during seizures. PTZ-induced upregulation of apoptotic cells was decreased upon pretreatment with SS. Inflammatory phenomena during seizure progression including the upregulation of interleukin 6 (IL-6), interleukin 1 beta (IL-1β), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were downregulated upon pretreatment with SS. The PTZ-induced recruitment of immunocytes was in turn reduced upon SS pretreatment. Moreover, SS pretreatment modulated oxidative stress, as demonstrated by decreased levels of catalase (CAT) and increased levels of glutathione peroxidase-1a (GPx1a) and manganese superoxide dismutase (Mn-SOD). However, pretreatment with SS modulated the PTZ-induced downregulation of the relative enzyme activity of CAT, GPx, and SOD. Hence, our findings suggest that SS pretreatment ameliorates PTZ-induced seizures, suppresses apoptosis, and downregulates the inflammatory response and oxidative stress, which potentially protect against further seizures in zebrafish.
    Matched MeSH terms: Seizures/chemically induced
  3. Paudel YN, Khan SU, Othman I, Shaikh MF
    ACS Chem Neurosci, 2021 09 15;12(18):3288-3302.
    PMID: 34463468 DOI: 10.1021/acschemneuro.0c00825
    Glycyrrhizin (GL) is a well-known pharmacological inhibitor of high mobility group box 1 (HMGB1) and is abundantly present in the licorice root (Glycyrrhiza radix). HMGB1 protein, a key mediator of neuroinflammation, has been implicated in several neurological disorders, including epilepsy. Epilepsy is a devastating neurological disorder with no effective disease-modifying treatment strategies yet, suggesting a pressing need for exploring novel therapeutic options. In the current investigation, using a second hit pentylenetetrazol (PTZ) induced chronic seizure model in adult zebrafish, regulated mRNA expression of HMGB1 was inhibited by pretreatment with GL (25, 50, and 100 mg/kg, ip). A molecular docking study suggests that GL establishes different binding interactions with the various amino acid chains of HMGB1 and Toll-like receptor-4 (TLR4). Our finding suggests that GL pretreatment reduces/suppresses second hit PTZ induced seizure, as shown by the reduction in the seizure score. GL also regulates the second hit PTZ induced behavioral impairment and rescued second hit PTZ related memory impairment as demonstrated by an increase in the inflection ratio (IR) at the 3 h and 24 h T-maze trial. GL inhibited seizure-induced neuronal activity as demonstrated by reduced C-fos mRNA expression. GL also modulated mRNA expression of BDNF, CREB-1, and NPY. The possible mechanism underlying the anticonvulsive effect of GL could be attributed to its anti-inflammatory activity, as demonstrated by the downregulated mRNA expression level of HMGB1, TLR4, NF-kB, and TNF-α. Overall, our finding suggests that GL exerts an anticonvulsive effect and ameliorates seizure-related memory disruption plausibly through regulating of the HMGB1-TLR4-NF-kB axis.
    Matched MeSH terms: Seizures/chemically induced
  4. Gao M, Qu K, Zhang W, Wang X
    Neuroimmunomodulation, 2021;28(2):90-98.
    PMID: 33774633 DOI: 10.1159/000513297
    INTRODUCTION: Pediatric patients with epilepsy are prone to cognitive impairments during growth and long-term use of most antiepileptic drugs (AED). The affected children do not respond to conventional AED and may require novel drugs to manage the disease. Valproic acid, a first-line drug to treat epilepsy, is associated with serious side effects, which precludes its wider use. Thus, in the present study, we intended to develop novel substituted pyrazoles.

    METHODS: The molecules were tested for anticonvulsive activity in Swiss albino mice via maximal electroshock seizure and subcutaneous pentylenetetrazole assays. The most potent molecule among the class was further assayed for its effect on behavioral and CNS depressant activity. The effect of the most potent compounds was also analyzed on various indices of oxidative stress and inflammation in mice.

    RESULTS: The designed compounds showed significant anticonvulsive activity in mice revealing 7h as the most potent anticonvulsive agent. The most potent anticonvulsant molecule 7h further showed no behavioral alteration and considerable CNS depressant activity. It also reduces the level of oxidative stress and inflammation in the mice.

    CONCLUSION: Our study demonstrated utility of pyrazole derivatives as anticonvulsants against epilepsy.

    Matched MeSH terms: Seizures/chemically induced
  5. Siang LH, Arulsamy A, Yoon YK, Shaikh MF
    Curr Neuropharmacol, 2022;20(10):1925-1940.
    PMID: 34517803 DOI: 10.2174/1570159X19666210913120637
    Epilepsy is a devastating neurological disorder. Current anti-convulsant drugs are only effective in about 70% of patients, while the rest remain drug-resistant. Thus, alternative methods have been explored to control seizures in these drug-resistant patients. One such method may be through the utilization of fruit phytochemicals. These phytochemicals have been reported to have beneficial properties such as anti-convulsant, anti-oxidant, and anti-inflammatory activities. However, some fruits may also elicit harmful effects. This review aims to summarize and elucidate the anti- or pro-convulsant effects of fruits used in relation to seizures in hopes of providing a good therapeutic reference to epileptic patients and their carers. Three databases, SCOPUS, ScienceDirect, and PubMed, were utilized for the literature search. Based on the PRISMA guidelines, a total of 40 articles were selected for critical appraisal in this review. Overall, the extracts and phytochemicals of fruits managed to effectively reduce seizure activities in various preclinical seizure models, acting mainly through the activation of the inhibitory neurotransmission and blocking the excitatory neurotransmission. Only star fruit has been identified as a pro-convulsant fruit due to its caramboxin and oxalate compounds. Future studies should focus more on utilizing these fruits as possible treatment strategies for epilepsy.
    Matched MeSH terms: Seizures/chemically induced
  6. Muir CK, Chan KL
    Med J Malaysia, 1980 Mar;34(3):279-80.
    PMID: 7191048
    The presence, in the fruit of Averrhoa carambola (star fruit), of a depressant agent with properties similar to those of tranquilizers was demonstrated.
    Matched MeSH terms: Seizures/chemically induced
  7. Lai SM, Lim KW, Cheng HK
    Singapore Med J, 1990 Oct;31(5):463-5.
    PMID: 2259944
    Margosa Oil is an extract of the seed of the Neem tree and is widely used as a traditional medicine by Indians in India, Sri Lanka, Burma, Thailand, Malaysia and Indonesia. Used mainly for external applications, it is often administered orally to neonates and infants regularly in small amounts. Margosa Oil causes toxic encephalopathy particularly in infants and young children. The usual features are vomiting, drowsiness, tachypnea and recurrent generalised seizures. Leucocytosis and metabolic acidosis are significant laboratory findings. Management is aimed primarily towards the control of convulsions although supportive management is equally important. Prognosis is usually good but fatalities and neurological deficits have been reported. We report here two infants with Margosa Oil poisoning presenting with encephalopathy.
    Matched MeSH terms: Seizures/chemically induced
  8. Jarrar Q, Ayoub R, Jarrar Y, Aburass H, Goh KW, Ardianto C, et al.
    J Integr Neurosci, 2023 Jul 26;22(4):104.
    PMID: 37519168 DOI: 10.31083/j.jin2204104
    BACKGROUND: Mefenamic acid (MFA), a common analgesic, causes central nervous system (CNS) toxicity at high doses with a proposed activity on the Gamma-aminobutyric acid (GABA) system. However, it remains unknown whether flumazenil (FMZ), a GABA type A receptor (GABAAR) antagonist, can reverse MFA toxicity.

    METHODS: The behavioral and neurophysiological effects of MFA were investigated in mice with and without FMZ pre-treatment. The elevated zero maze (EZM) and marble burying tests were used to assess anxiety-like behaviors and burying activities, respectively. The standard bar test was used to evaluate catalepsy, while the actophotometer test was used to measure locomotor activity. Seizure intensity was scored, and fatalities were counted.

    RESULTS: Without FMZ pre-treatment, MFA induced behavioral and neurophysiological effects in a dose-dependent manner as follows: At a dose of 20 mg/kg, i.p, MFA-treated mice exhibited anxiety-like behaviors, which was determined by a significant increase in the time spent in the closed areas and a significant decrease in the number of entries to the open areas of the EZM apparatus. These mice also showed a significant decrease in the burying activity, manifested as a significant decrease in the number of buried marbles. At 40 mg/kg, i.p., MFA-treated mice showed catalepsy that was associated with a significant decrease in locomotor activity. At a dose of 80 mg/kg, i.p., mice developed fatal tonic-clonic seizures (seizure score = 4). Pre-treatment with FMZ (5 mg/kg, i.p.) significantly reversed the anxiety-like behaviors and restored marble-burying activity. Additionally, FMZ prevented catalepsy, significantly restored locomotor activity, reduced seizure intensity (seizure score = 0.3) and significantly reduced mortalities.

    CONCLUSIONS: The present study's findings indicate that activation of the GABAAR is involved in the CNS toxicity of MFA, and FMZ reverses MFA toxicity by interfering with this receptor.

    Matched MeSH terms: Seizures/chemically induced
  9. Muniandy RK, Sinnathamby V
    BMJ Case Rep, 2012;2012.
    PMID: 22922924 DOI: 10.1136/bcr-2012-006562
    A 16-month-old child developed a brief generalised tonic-clonic fitting episode and vomiting at home, after accidental ingestion of traditional massage oil. As the patient presented with clinical features of salicylate toxicity, appropriate management was instituted. He was admitted to the intensive care unit for multiorgan support. The child was discharged well 1 week after the incident. Methyl-salicylate is a common component of massage oils which are used for topical treatment of joint and muscular pains. However, these massage oils may be toxic when taken orally. Early recognition of the salicylate toxicity is very important in producing a good patient outcome.
    Matched MeSH terms: Seizures/chemically induced
  10. Ab Rahman N, Lim MT, Lee FY, Lee SC, Ramli A, Saharudin SN, et al.
    Vaccine, 2022 Jul 30;40(32):4394-4402.
    PMID: 35667917 DOI: 10.1016/j.vaccine.2022.05.075
    BACKGROUND: Rapid deployment of COVID-19 vaccines is challenging for safety surveillance, especially on adverse events of special interest (AESIs) that were not identified during the pre-licensure studies. This study evaluated the risk of hospitalisations for predefined diagnoses among the vaccinated population in Malaysia.

    METHODS: Hospital admissions for selected diagnoses between 1 February 2021 and 30 September 2021 were linked to the national COVID-19 immunisation register. We conducted self-controlled case-series study by identifying individuals who received COVID-19 vaccine and diagnosis of thrombocytopenia, venous thromboembolism, myocardial infarction, myocarditis/pericarditis, arrhythmia, stroke, Bell's Palsy, and convulsion/seizure. The incidence of events was assessed in risk period of 21 days postvaccination relative to the control period. We used conditional Poisson regression to calculate the incidence rate ratio (IRR) and 95% confidence interval (CI) with adjustment for calendar period.

    RESULTS: There was no increase in the risk for myocarditis/pericarditis, Bell's Palsy, stroke, and myocardial infarction in the 21 days following either dose of BNT162b2, CoronaVac, and ChAdOx1 vaccines. A small increased risk of venous thromboembolism (IRR 1.24; 95% CI 1.02, 1.49), arrhythmia (IRR 1.16, 95% CI 1.07, 1.26), and convulsion/seizure (IRR 1.26; 95% CI 1.07, 1.48) was observed among BNT162b2 recipients. No association between CoronaVac vaccine was found with all events except arrhythmia (IRR 1.15; 95% CI 1.01, 1.30). ChAdOx1 vaccine was associated with an increased risk of thrombocytopenia (IRR 2.67; 95% CI 1.21, 5.89) and venous thromboembolism (IRR 2.22; 95% CI 1.17, 4.21).

    CONCLUSION: This study shows acceptable safety profiles of COVID-19 vaccines among recipients of BNT162b2, CoronaVac, and ChAdOx1 vaccines. This information can be used together with effectiveness data for risk-benefit analysis of the vaccination program. Further surveillance with more data is required to assess AESIs following COVID-19 vaccination in short- and long-term.

    Matched MeSH terms: Seizures/chemically induced
  11. Paudel YN, Kumari Y, Abidin SAZ, Othman I, Shaikh MF
    Int J Mol Sci, 2020 Apr 03;21(7).
    PMID: 32260203 DOI: 10.3390/ijms21072492
    Epilepsy is a devastating neurological condition exhibited by repeated spontaneous and unpredictable seizures afflicting around 70 million people globally. The basic pathophysiology of epileptic seizures is still elusive, reflecting an extensive need for further research. Developing a novel animal model is crucial in understanding disease mechanisms as well as in assessing the therapeutic target. Most of the pre-clinical epilepsy research has been focused on rodents. Nevertheless, zebrafish disease models are relevant to human disease pathophysiology hence are gaining increased attention nowadays. The current study for the very first time developed a pilocarpine-induced chronic seizure-like condition in adult zebrafish and investigated the modulation in several neuroinflammatory genes and neurotransmitters after pilocarpine exposures. Seizure score analysis suggests that compared to a single dose, repeated dose pilocarpine produces chronic seizure-like effects maintaining an average seizure score of above 2 each day for a minimum of 10 days. Compared to the single dose pilocarpine treated group, there was increased mRNA expression of HMGB1, TLR4, TNF-α, IL-1, BDNF, CREB-1, and NPY; whereas decreased expression of NF-κB was upon the repeated dose of pilocarpine administration. In addition, the epileptic group demonstrates modulation in neurotransmitters levels such as GABA, Glutamate, and Acetylcholine. Moreover, proteomic profiling of the zebrafish brain from the normal and epileptic groups from LCMS/MS quantification detected 77 and 13 proteins in the normal and epileptic group respectively. Summing up, the current investigation depicted that chemically induced seizures in zebrafish demonstrated behavioral and molecular alterations similar to classical rodent seizure models suggesting the usability of adult zebrafish as a robust model to investigate epileptic seizures.
    Matched MeSH terms: Seizures/chemically induced
  12. Chellian R, Pandy V
    Biomed Pharmacother, 2018 Dec;108:1591-1595.
    PMID: 30372861 DOI: 10.1016/j.biopha.2018.09.137
    Alpha-asarone is one of the bioactive phytochemicals present in the rhizomes of Acorus species and demonstrated its anticonvulsant activity in rodents. Alpha-asarone protected mice from the gamma-aminobutyric acid (GABA) type A receptor antagonist or N-methyl-d-aspartate (NMDA) receptor agonist-induced seizures. In our recent study, α-asarone attenuated the nicotine withdrawal-induced depression-like behavior in mice. The seizures induced by nicotine is mediated through the activation of nicotinic acetylcholine receptors (nAChRs) and stimulation of NMDA receptors. Therefore, we hypothesized that α-asarone might be effective against nicotine-induced seizures. Also, the interaction of α-asarone with nAChRs is unknown. In this study, we investigated the effect of α-asarone on the locomotor activity and body temperature in mice. In addition, we studied the effect of α-asarone on nicotine-induced seizures in mice. Finally, we assessed in vivo pharmacodynamic interaction of α-asarone with nAChRs using nicotine-induced hypomotility and hypothermia tests in mice. The results of this study showed that the α-asarone (50-200 mg/kg, i.p.) and diazepam (5 mg/kg, i.p.) treatment significantly decreased the locomotor activity and body temperature in mice. Furthermore, α-asarone (50-200 mg/kg, i.p.) and diazepam (5 mg/kg, i.p.) pretreatment significantly prolonged the onset time of nicotine-induced seizures in mice. However, α-asarone (30 and 50 mg/kg, i.p.) pretreatment did not inhibit the nicotine-induced hypomotility or hypothermia in mice. Conversely, mecamylamine (1 mg/kg, s.c.) pretreatment completely blocked the nicotine-induced seizures and significantly prevents the nicotine-induced hypomotility and hypothermia in mice. Overall, these results suggest that the protective effect of α-asarone against nicotine-induced seizures did not mediate through the antagonism of nAChRs. We also postulated that the GABAergic and glutamatergic activities of α-asarone could be involved in its protective effect against nicotine-induced seizures and based on this aspect further studies are required.
    Matched MeSH terms: Seizures/chemically induced*
  13. Fuah KW, Lim CTS, Pang DCL, Wong JS
    Saudi J Kidney Dis Transpl, 2018 2 20;29(1):207-209.
    PMID: 29456232 DOI: 10.4103/1319-2442.225177
    Tranexamic acid (TXA) is an antifibrinolytic agent commonly used to achieve hemostasis. However, there have been a few case reports suggesting that high-dose intravenous TXA has epileptogenic property. In patients with renal impairment, even administering the usual recommended dose of TXA can induce seizure episodes. We present here a patient on hemodialysis who developed seizures after receiving two doses of TXA over 5 h period.
    Matched MeSH terms: Seizures/chemically induced*
  14. Mohd Sairazi NS, K N S S, Asari MA, Mummedy S, Muzaimi M, Sulaiman SA
    BMC Complement Altern Med, 2017 Jan 09;17(1):31.
    PMID: 28068984 DOI: 10.1186/s12906-016-1534-x
    Administration of KA on rodents has resulted in seizures, behavioral changes, oxidative stress, and neuronal degeneration on selective population of neurons in the brain. The present study was undertaken to investigate the extent of neuroprotective effect conferred by Malaysian Tualang Honey (TH), an antioxidant agent, in the cerebral cortex of rats against KA-induced oxidative stress and neurodegeneration in an animal model of KA-induced excitotoxicity.
    Matched MeSH terms: Seizures/chemically induced
  15. Choo BKM, Kundap UP, Johan Arief MFB, Kumari Y, Yap JL, Wong CP, et al.
    PMID: 30844417 DOI: 10.1016/j.pnpbp.2019.02.014
    Epilepsy is marked by seizures that are a manifestation of excessive brain activity and is symptomatically treatable by anti-epileptic drugs (AEDs). Unfortunately, the older AEDs have many side effects, with cognitive impairment being a major side effect that affects the daily lives of people with epilepsy. Thus, this study aimed to determine if newer AEDs (Zonisamide, Levetiracetam, Perampanel, Lamotrigine and Valproic Acid) also cause cognitive impairment, using a zebrafish model. Acute seizures were induced in zebrafish using pentylenetetrazol (PTZ) and cognitive function was assessed using the T-maze test of learning and memory. Neurotransmitter and gene expression levels related to epilepsy as well as learning and memory were also studied to provide a better understanding of the underlying processes. Ultimately, impaired cognitive function was seen in AED treated zebrafish, regardless of whether seizures were induced. A highly significant decrease in γ-Aminobutyric Acid (GABA) and glutamate levels was also discovered, although acetylcholine levels were more variable. The gene expression levels of Brain-Derived Neurotrophic Factor (BDNF), Neuropeptide Y (NPY) and Cyclic Adenosine Monophosphate (CAMP) Responsive Element Binding Protein 1 (CREB-1) were not found to be significantly different in AED treated zebrafish. Based on the experimental results, a decrease in brain glutamate levels due to AED treatment appears to be at least one of the major factors behind the observed cognitive impairment in the treated zebrafish.
    Matched MeSH terms: Seizures/chemically induced
  16. Choudhary AK, Lee YY
    Nutr Neurosci, 2018 Jun;21(5):306-316.
    PMID: 28198207 DOI: 10.1080/1028415X.2017.1288340
    Aspartame (α-aspartyl-l-phenylalanine-o-methyl ester), an artificial sweetener, has been linked to behavioral and cognitive problems. Possible neurophysiological symptoms include learning problems, headache, seizure, migraines, irritable moods, anxiety, depression, and insomnia. The consumption of aspartame, unlike dietary protein, can elevate the levels of phenylalanine and aspartic acid in the brain. These compounds can inhibit the synthesis and release of neurotransmitters, dopamine, norepinephrine, and serotonin, which are known regulators of neurophysiological activity. Aspartame acts as a chemical stressor by elevating plasma cortisol levels and causing the production of excess free radicals. High cortisol levels and excess free radicals may increase the brains vulnerability to oxidative stress which may have adverse effects on neurobehavioral health. We reviewed studies linking neurophysiological symptoms to aspartame usage and conclude that aspartame may be responsible for adverse neurobehavioral health outcomes. Aspartame consumption needs to be approached with caution due to the possible effects on neurobehavioral health. Whether aspartame and its metabolites are safe for general consumption is still debatable due to a lack of consistent data. More research evaluating the neurobehavioral effects of aspartame are required.
    Matched MeSH terms: Seizures/chemically induced
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links