Displaying all 2 publications

Abstract:
Sort:
  1. Auta HS, Emenike CU, Jayanthi B, Fauziah SH
    Mar Pollut Bull, 2018 Feb;127:15-21.
    PMID: 29475646 DOI: 10.1016/j.marpolbul.2017.11.036
    Interest in the biodegradation of microplastics is due to their ubiquitous distribution, availability, high persistence in the environment and deleterious impact on marine biota. The present study evaluates the growth response and mechanism of polypropylene (PP) degradation by Bacillus sp. strain 27 and Rhodococcus sp. strain 36 isolated from mangrove sediments upon exposure to PP microplastics. Both bacteria strains were able to utilise PP microplastic for growth as confirmed by the reduction of the polymer mass. The weight loss was 6.4% by Rhodococcus sp. strain 36 and 4.0% by Bacillus sp. strain 27 after 40days of incubation. PP biodegradation was further confirmed using Fourier-transform infrared spectroscopy and scanning electron microscopy analyses, which revealed structural and morphological changes in the PP microplastics with microbial treatment. These analyses showed that the isolates can colonise, modify and utilise PP microplastics as carbon source.
    Matched MeSH terms: Rhodococcus/isolation & purification*
  2. Arif NM, Ahmad SA, Syed MA, Shukor MY
    J Basic Microbiol, 2013 Jan;53(1):9-19.
    PMID: 22581645 DOI: 10.1002/jobm.201100120
    In this work, we report on the isolation of a phenol-degrading Rhodococcus sp. with a high tolerance towards phenol. The isolate was identified as Rhodococcus sp. strain AQ5NOL 2, based on 16S rDNA analysis. The strain degraded phenol using the meta pathway, a trait shared by many phenol-degraders. In addition to phenol biodegradation, the strain was also capable of degrading diesel. Strain AQ5NOL 2 exhibited a broad optimum temperature for growth on phenol at between 20 °C and 35 °C. The best nitrogen sources were ammonium sulphate, glycine or phenylalanine, followed by proline, nitrate, leucine, and alanine (in decreasing efficiency). Strain AQ5NOL 2 showed a high tolerance and degradation capacity of phenol, for it was able to register growth in the presence of 2000 mg l(-1) phenol. The growth of this strain on phenol as sole carbon and energy source were modeled using Haldane kinetics with a maximal specific growth rate (μ(max)) of 0.1102 hr(-1), a half-saturation constant (K(s) ) of 99.03 mg l(-1) or 1.05 mmol l(-1), and a substrate inhibition constant (K(i)) of 354 mg l(-1) or 3.76 mmol l(-1). Aside from phenol, the strain could utilize diesel, 2,4-dinitrophenol and ρ-cresol as carbon sources for growth. Strain AQ5NOL 2 exhibited inhibition of phenol degradation by Zn(2+), Cu(2+), Cr(6+), Ag(+) and Hg(2+) at 1 mg l(-1).
    Matched MeSH terms: Rhodococcus/isolation & purification*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links