Type I interferon (IFN-α/β) is a fundamental antiviral defense mechanism. Mouse models have been pivotal to understanding the role of IFN-α/β in immunity, although validation of these findings in humans has been limited. We investigated a previously healthy child with fatal encephalitis after inoculation of the live attenuated measles, mumps, and rubella (MMR) vaccine. By targeted resequencing, we identified a homozygous mutation in the high-affinity IFN-α/β receptor (IFNAR2) in the proband, as well as a newborn sibling, that rendered cells unresponsive to IFN-α/β. Reconstitution of the proband's cells with wild-type IFNAR2 restored IFN-α/β responsiveness and control of IFN-attenuated viruses. Despite the severe outcome of systemic live vaccine challenge, the proband had previously shown no evidence of heightened susceptibility to respiratory viral pathogens. The phenotype of IFNAR2 deficiency, together with similar findings in STAT2-deficient patients, supports an essential but narrow role for IFN-α/β in human antiviral immunity.
The recent emergence of Zika virus (ZIKV) in Brazil was associated with an increased number of fetal brain infections that resulted in a spectrum of congenital neurological complications known as congenital Zika syndrome (CZS). Herein, we generated de novo from sequence data an early Asian lineage ZIKV isolate (ZIKV-MY; Malaysia, 1966) not associated with microcephaly and compared the in vitro replication kinetics and fetal brain infection in interferon α/β receptor 1 knockout (IFNAR1-/-) dams of this isolate and of a Brazilian isolate (ZIKV-Natal; Natal, 2015) unequivocally associated with microcephaly. The replication efficiencies of ZIKV-MY and ZIKV-Natal in A549 and Vero cells were similar, while ZIKV-MY replicated more efficiently in wild-type (WT) and IFNAR-/- mouse embryonic fibroblasts. Viremias in IFNAR1-/- dams were similar after infection with ZIKV-MY or ZIKV-Natal, and importantly, infection of fetal brains was also not significantly different. Thus, fetal brain infection does not appear to be a unique feature of Brazilian ZIKV isolates.