Displaying publications 1 - 20 of 69 in total

Abstract:
Sort:
  1. Grimshaw R, Stepanyants Y, Alias A
    Proc Math Phys Eng Sci, 2016 Jan;472(2185):20150416.
    PMID: 26997887
    It is well known that the Ostrovsky equation with normal dispersion does not support steady solitary waves. An initial Korteweg-de Vries solitary wave decays adiabatically through the radiation of long waves and is eventually replaced by an envelope solitary wave whose carrier wave and envelope move with different velocities (phase and group velocities correspondingly). Here, we examine the same initial condition for the Ostrovsky equation with anomalous dispersion, when the wave frequency increases with wavenumber in the limit of very short waves. The essential difference is that now there exists a steady solitary wave solution (Ostrovsky soliton), which in the small-amplitude limit can be described asymptotically through the solitary wave solution of a nonlinear Schrödinger equation, based at that wavenumber where the phase and group velocities coincide. Long-time numerical simulations show that the emergence of this steady envelope solitary wave is a very robust feature. The initial Korteweg-de Vries solitary wave transforms rapidly to this envelope solitary wave in a seemingly non-adiabatic manner. The amplitude of the Ostrovsky soliton strongly correlates with the initial Korteweg-de Vries solitary wave.
    Matched MeSH terms: Radio Waves
  2. Wong HS, Islam MT, Kibria S
    ScientificWorldJournal, 2014;2014:725806.
    PMID: 24967440 DOI: 10.1155/2014/725806
    A multiple input and multiple output (MIMO) antenna that comprises a printed microstrip antenna and a printed double-L sleeve monopole antenna for LTE 1800 wireless application is presented. The printed double-L sleeve monopole antenna is fed by a 50 ohm coplanar waveguide (CPW). A novel T-shaped microstrip feedline printed on the other side of the PCB is used to excite the waveguide's outer shell. Isolation characteristics better than -15 dB can be obtained for the proposed MIMO antenna. The proposed antenna can operate in LTE 1800 (1710 MHz-1880 MHz). This antenna exhibits omnidirectional characteristics. The efficiency of the antenna is greater than 70% and has high gain of 2.18 dBi.
    Matched MeSH terms: Radio/instrumentation*
  3. Vitee N, Ramiah H, Chong WK, Tan GH, Kanesan J, Reza AW
    ScientificWorldJournal, 2014;2014:683971.
    PMID: 25133252 DOI: 10.1155/2014/683971
    A low-power wideband mixer is designed and implemented in 0.13 µm standard CMOS technology based on resistive feedback current-reuse (RFCR) configuration for the application of cognitive radio receiver. The proposed RFCR architecture incorporates an inductive peaking technique to compensate for gain roll-off at high frequency while enhancing the bandwidth. A complementary current-reuse technique is used between transconductance and IF stages to boost the conversion gain without additional power consumption by reusing the DC bias current of the LO stage. This downconversion double-balanced mixer exhibits a high and flat conversion gain (CG) of 14.9 ± 1.4 dB and a noise figure (NF) better than 12.8 dB. The maximum input 1-dB compression point (P1dB) and maximum input third-order intercept point (IIP3) are -13.6 dBm and -4.5 dBm, respectively, over the desired frequency ranging from 50 MHz to 10 GHz. The proposed circuit operates down to a supply headroom of 1 V with a low-power consumption of 3.5 mW.
    Matched MeSH terms: Radio/instrumentation*
  4. Shakiba M, Singh MJ, Sundararajan E, Zavvari A, Islam MT
    PLoS One, 2014;9(4):e95425.
    PMID: 24752285 DOI: 10.1371/journal.pone.0095425
    The main objective of Radio Frequency Identification systems is to provide fast identification for tagged objects. However, there is always a chance of collision, when tags transmit their data to the reader simultaneously. Collision is a time-consuming event that reduces the performance of RFID systems. Consequently, several anti-collision algorithms have been proposed in the literature. Dynamic Framed Slotted ALOHA (DFSA) is one of the most popular of these algorithms. DFSA dynamically modifies the frame size based on the number of tags. Since the real number of tags is unknown, it needs to be estimated. Therefore, an accurate tag estimation method has an important role in increasing the efficiency and overall performance of the tag identification process. In this paper, we propose a novel estimation technique for DFSA anti-collision algorithms that applies birthday paradox theory to estimate the number of tags accurately. The analytical discussion and simulation results prove that the proposed method increases the accuracy of tag estimation and, consequently, outperforms previous schemes.
    Matched MeSH terms: Radio Frequency Identification Device*
  5. Jalil J, Reaz MB, Bhuiyan MA, Rahman LF, Chang TG
    ScientificWorldJournal, 2014;2014:580385.
    PMID: 24587731 DOI: 10.1155/2014/580385
    In radio frequency identification (RFID) systems, performance degradation of phase locked loops (PLLs) mainly occurs due to high phase noise of voltage-controlled oscillators (VCOs). This paper proposes a low power, low phase noise ring-VCO developed for 2.42 GHz operated active RFID transponders compatible with IEEE 802.11 b/g, Bluetooth, and Zigbee protocols. For ease of integration and implementation of the module in tiny die area, a novel pseudodifferential delay cell based 3-stage ring oscillator has been introduced to fabricate the ring-VCO. In CMOS technology, 0.18 μm process is adopted for designing the circuit with 1.5 V power supply. The postlayout simulated results show that the proposed oscillator works in the tuning range of 0.5-2.54 GHz and dissipates 2.47 mW of power. It exhibits a phase noise of -126.62 dBc/Hz at 25 MHz offset from 2.42 GHz carrier frequency.
    Matched MeSH terms: Radio Frequency Identification Device/methods*
  6. Rokunuzzaman M, Islam MT, Arshad H, Jit Singh M, Misran N
    PLoS One, 2015;10(7):e0132530.
    PMID: 26177376 DOI: 10.1371/journal.pone.0132530
    This paper addresses the performance evaluation of a modified square loop antenna design for UHF RFID applications that is excited through a narrow feed line connected to a square loop, an impedance matching network. The square loop dimensions are modified to reach a conjugate impedance matching. A gap is fixed between the feed-lines to link the chip. To achieve impedance matching, the structures of the feed-line are optimized accordingly. In addition, the antenna consists of a straightforward geometry. An 11.9-meter maximum read range is achieved using a compact size of 80 × 44 mm2 and 3.2 W for the effective isotropic radiated power. Additional findings reveal that the proposed tag antenna is able to provide a stable resonance response in the near field of a large metallic surface.
    Matched MeSH terms: Radio Frequency Identification Device*
  7. Razzaque MA, Dobson S
    Sensors (Basel), 2014;14(2):2822-59.
    PMID: 24526302 DOI: 10.3390/s140202822
    Sensing of the application environment is the main purpose of a wireless sensor network. Most existing energy management strategies and compression techniques assume that the sensing operation consumes significantly less energy than radio transmission and reception. This assumption does not hold in a number of practical applications. Sensing energy consumption in these applications may be comparable to, or even greater than, that of the radio. In this work, we support this claim by a quantitative analysis of the main operational energy costs of popular sensors, radios and sensor motes. In light of the importance of sensing level energy costs, especially for power hungry sensors, we consider compressed sensing and distributed compressed sensing as potential approaches to provide energy efficient sensing in wireless sensor networks. Numerical experiments investigating the effectiveness of compressed sensing and distributed compressed sensing using real datasets show their potential for efficient utilization of sensing and overall energy costs in wireless sensor networks. It is shown that, for some applications, compressed sensing and distributed compressed sensing can provide greater energy efficiency than transform coding and model-based adaptive sensing in wireless sensor networks.
    Matched MeSH terms: Radio
  8. Islam MT, Ullah MH, Singh MJ, Faruque MRI
    Materials (Basel), 2013 Jul 31;6(8):3226-3240.
    PMID: 28811432 DOI: 10.3390/ma6083226
    A new metasurface superstrate structure (MSS)-loaded dual band microstrip line-fed small patch antenna is presented in this paper. The proposed antenna was designed on a ceramic-filled bioplastic sandwich substrate with a high dielectric constant. The proposed 7 × 6 element, square-shaped, single-sided MSS significantly improved the bandwidth and gain of the proposed antenna. The proposed MSS incorporated a slotted patch antenna that effectively increased the measured operating bandwidth from 13.3% to 18.8% and from 14.8% to 23.2% in the lower and upper bands, respectively. Moreover, the average gain of the proposed MSS-based antenna was enhanced from 2.12 dBi to 3.02 dBi in the lower band and from 4.10 dBi to 5.28 dBi in the upper band compared to the patch antenna alone. In addition to the bandwidth and gain improvements, more directive radiation characteristics were also observed from the MSS antenna compared to the patch itself. The effects of the MSS elements and the ground plane length on the reflection coefficient of the antenna were analyzed and optimized. The overall performance makes the proposed antenna appropriate for RFID and WLAN applications.
    Matched MeSH terms: Radio Frequency Identification Device
  9. Soliman MM, Chowdhury MEH, Khandakar A, Islam MT, Qiblawey Y, Musharavati F, et al.
    Sensors (Basel), 2021 May 02;21(9).
    PMID: 34063296 DOI: 10.3390/s21093163
    Implantable antennas are mandatory to transfer data from implants to the external world wirelessly. Smart implants can be used to monitor and diagnose the medical conditions of the patient. The dispersion of the dielectric constant of the tissues and variability of organ structures of the human body absorb most of the antenna radiation. Consequently, implanting an antenna inside the human body is a very challenging task. The design of the antenna is required to fulfill several conditions, such as miniaturization of the antenna dimension, biocompatibility, the satisfaction of the Specific Absorption Rate (SAR), and efficient radiation characteristics. The asymmetric hostile human body environment makes implant antenna technology even more challenging. This paper aims to summarize the recent implantable antenna technologies for medical applications and highlight the major research challenges. Also, it highlights the required technology and the frequency band, and the factors that can affect the radio frequency propagation through human body tissue. It includes a demonstration of a parametric literature investigation of the implantable antennas developed. Furthermore, fabrication and implantation methods of the antenna inside the human body are summarized elaborately. This extensive summary of the medical implantable antenna technology will help in understanding the prospects and challenges of this technology.
    Matched MeSH terms: Radio Waves*
  10. Nik Abdull Halim NMH, Mohd Jamili AF, Che Dom N, Abd Rahman NH, Jamal Kareem Z, Dapari R
    PLoS One, 2024;19(2):e0298738.
    PMID: 38412167 DOI: 10.1371/journal.pone.0298738
    INTRODUCTION: Wireless communication connects billions of people worldwide, relying on radiofrequency electromagnetic fields (RF-EMF). Generally, fifth-generation (5G) networks shift RF carriers to higher frequencies. Although radio, cell phones, and television have benefitted humans for decades, higher carrier frequencies can present potential health risks. Insects closely associated with humans (such as mosquitoes) can undergo increased RF absorption and dielectric heating. This process inadvertently impacts the insects' behaviour, morphology, and physiology, which can influence their spread. Therefore, this study examined the impact of RF exposure on Ae. aegypti mosquitoes, which are prevalent in indoor environments with higher RF exposure risk. The morphologies of Ae. aegypti eggs and their developments into Ae. aegypti mosquitoes were investigated.

    METHODS: A total of 30 eggs were exposed to RF radiation at three frequencies: baseline, 900 MHz, and 18 GHz. Each frequency was tested in triplicate. Several parameters were assessed through daily observations in an insectarium, including hatching responses, development times, larval numbers, and pupation periods until the emergence of adult insects.

    RESULTS: This study revealed that the hatching rate for the 900 MHz group was the highest (79 ± 10.54%) compared to other exposures (p = 0.87). The adult emergence rate for the 900 MHz group was also the lowest at 33 ± 2.77%. A significant difference between the groups was demonstrated in the statistical analysis (p = 0.03).

    CONCLUSION: This work highlighted the morphology sensitivity of Ae. aegypti eggs and their developments in the aquatic phase to RF radiation, potentially altering their life cycle.

    Matched MeSH terms: Radio Waves/adverse effects
  11. Shereen MK, Khattak MI, Zubir F, Basit A
    PLoS One, 2022;17(1):e0260407.
    PMID: 35041686 DOI: 10.1371/journal.pone.0260407
    Reconfigurable antennas have received much attention in RF energy harvesting models owing to their selectivity for operating frequency and polarization. The characteristic of having frequency selectivity and polarization selectivity can be termed as frequency diversity and polarization diversity, respectively. This paper investigates a rectenna device with a new proposed topology in order to eliminate coupling between input and output lines and increase the rectification efficiency with the use of single feed hybrid reconfigurable antenna, switch between 28GHz and 38GHz frequency. Moreover, it is designed to charge a rechargeable battery of 1watt(W). The Reconfiguration mechanism is realized by electronically controlling different states of Switches. PIN Diode (as RLC Equivalent circuit) is used as a switch for ON/OFF states. This antenna mainly comprises rectangular shaped patches (28GHz and 38GHz) with Triango-Truncated edge at the corners. Eighteen PIN Diodes are placed symmetrically throughout the antenna presenting as, S1 & S2 for frequency reconfiguration, S3 to S6 & S7 to S10 connects Triango Truncated edge at the corners for polarization reconfiguration, and for radiation pattern reconfiguration at S11 to S14 & S15 to S18 has been used. The proposed antenna model is capable of simultaneously changing, the radiation patterns as clock and anti-clockwise directions at ±90-degree shift in E and H planes, circularly polarized (CP) states among, Linear Polarization (LP), Right Hand Circularly Polarization (RHCP), and Left Hand Circularly Polarization (LHCP). The current design describes using single antenna for energy harvesting and 5G mobile communication application. This would lead to higher output currents, leading to the ability to efficiently charge a wide variety of batteries. A fully functional prototype has been designed, fabricated and its compound reconfiguration characteristics have been validated for simulated and measured results. For validation of results, the experimental results and the simulation results from the proposed mathematical model were made into comparison, and excellent correlation between the measured and simulated results was obtained.
    Matched MeSH terms: Radio Waves*
  12. Rahman LF, Marufuzzaman M, Alam L, Sidek LM, Reaz MBI
    PLoS One, 2020;15(2):e0225408.
    PMID: 32023244 DOI: 10.1371/journal.pone.0225408
    A high-voltage generator (HVG) is an essential part of a radio frequency identification electrically erasable programmable read-only memory (RFID-EEPROM). An HVG circuit is used to generate a regulated output voltage that is higher than the power supply voltage. However, the performance of the HVG is affected owing to the high-power dissipation, high-ripple voltage and low-pumping efficiency. Therefore, a regulator circuit consists of a voltage divider, comparator and a voltage reference, which are respectively required to reduce the ripple voltage, increase pumping efficiency and decrease the power dissipation of the HVG. Conversely, a clock driving circuit consists of the current-starved ring oscillator (CSRO), and the non- overlapping clock generator is required to drive the clock signals of the HVG circuit. In this study, the Mentor Graphics EldoSpice software package is used to design and simulate the HVG circuitry. The results showed that the designed CSRO dissipated only 4.9 μW at 10.2 MHz and that the phase noise was only -119.38 dBc/Hz at 1 MHz. Moreover, the proposed charge pump circuit was able to generate a maximum VPP of 13.53 V and it dissipated a power of only 31.01 μW for an input voltage VDD of 1.8 V. After integrating all the HVG modules, the results showed that the regulated HVG circuit was also able to generate a higher VPP of 14.59 V, while the total power dissipated was only 0.12 mW with a chip area of 0.044 mm2. Moreover, the HVG circuit produced a pumping efficiency of 90% and reduced the ripple voltage to <4 mV. Therefore, the integration of all the proposed modules in HVG ensured low-ripple programming voltages, higher pumping efficiency, and EEPROMs with lower power dissipation, and can be extensively used in low-power applications, such as in non-volatile memory, radiofrequency identification transponders, on-chip direct current DC-DC converters.
    Matched MeSH terms: Radio Waves; Radio Frequency Identification Device*
  13. Azmi N, Kamarudin LM, Zakaria A, Ndzi DL, Rahiman MHF, Zakaria SMMS, et al.
    Sensors (Basel), 2021 Mar 08;21(5).
    PMID: 33800174 DOI: 10.3390/s21051875
    Seasonal crops require reliable storage conditions to protect the yield once harvested. For long term storage, controlling the moisture content level in grains is challenging because existing moisture measuring techniques are time-consuming and laborious as measurements are carried out manually. The measurements are carried out using a sample and moisture may be unevenly distributed inside the silo/bin. Numerous studies have been conducted to measure the moisture content in grains utilising dielectric properties. To the best of authors' knowledge, the utilisation of low-cost wireless technology operating in the 2.4 GHz and 915 MHz ISM bands such as Wireless Sensor Network (WSN) and Radio Frequency Identification (RFID) have not been widely investigated. This study focuses on the characterisation of 2.4 GHz Radio Frequency (RF) transceivers using ZigBee Standard and 868 to 915 MHz UHF RFID transceiver for moisture content classification and prediction using Artificial Neural Network (ANN) models. The Received Signal Strength Indicator (RSSI) from the wireless transceivers is used for moisture content prediction in rice. Four samples (2 kg of rice each) were conditioned to 10%, 15%, 20%, and 25% moisture contents. The RSSI from both systems were obtained and processed. The processed data is used as input to different ANNs models such as Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Random Forest, and Multi-layer Perceptron (MLP). The results show that the Random Forest method with one input feature (RSSI_WSN) provides the highest accuracy of 87% compared to the other four models. All models show more than 98% accuracy when two input features (RSSI_WSN and RSSI_TAG2) are used. Hence, Random Forest is a reliable model that can be used to predict the moisture content level in rice as it gives a high accuracy even when only one input feature is used.
    Matched MeSH terms: Radio Waves; Radio Frequency Identification Device
  14. Geok TK, Hossain F, Chiat ATW
    PLoS One, 2018;13(8):e0201905.
    PMID: 30086170 DOI: 10.1371/journal.pone.0201905
    Radio propagation prediction simulation methods based on deterministic technique such as ray launching is extensively used to accomplish radio channel characterization. However, the superiority of the simulation depends on the number of rays launched and received. This paper presented the indoor three-dimensional (3D) Minimum Ray Launching Maximum Accuracy (MRLMA) technique, which is applicable for an efficient indoor radio wave propagation prediction. Utilizing the novel MRLMA technique in the simulation environment for ray lunching and tracing can drastically reduce the number of rays that need to be traced, and improve the efficiency of ray tracing. Implementation and justification of MRLMA presented in the paper. An indoor office 3D layouts are selected and simulations have been performed using the MRLMA and other reference techniques. Results showed that the indoor 3D MRLMA model is appropriate for wireless communications network systems design and optimization process with respect to efficiency, coverage, number of rays launching, number of rays received by the mobile station, and simulation time.
    Matched MeSH terms: Radio Waves*
  15. Rokunuzzaman M, Islam MT, Rowe WS, Kibria S, Jit Singh M, Misran N
    PLoS One, 2016;11(8):e0161293.
    PMID: 27533470 DOI: 10.1371/journal.pone.0161293
    A semi-circle looped vertically omnidirectional radiation (VOR) patterned tag antenna for UHF (919-923 MHz for Malaysia) frequency is designed to overcome the impedance mismatch issue in this paper. Two impedance matching feeding strips are used in the antenna structure to tune the input impedance of the antenna. Two dipole shaped meandered lines are used to achieve a VOR pattern. The proposed antenna is designed for 23-j224 Ω chip impedance. The antenna is suitable for 'place and tag' application. A small size of 77.68×35.5 mm2 is achieved for a read range performance of 8.3 meters using Malaysia regulated maximum power transfer of 2.0 W effective radiated power (ERP).
    Matched MeSH terms: Radio Frequency Identification Device*
  16. Kamaludin H, Mahdin H, Abawajy JH
    PLoS One, 2018;13(3):e0193951.
    PMID: 29565982 DOI: 10.1371/journal.pone.0193951
    Although Radio Frequency Identification (RFID) is poised to displace barcodes, security vulnerabilities pose serious challenges for global adoption of the RFID technology. Specifically, RFID tags are prone to basic cloning and counterfeiting security attacks. A successful cloning of the RFID tags in many commercial applications can lead to many serious problems such as financial losses, brand damage, safety and health of the public. With many industries such as pharmaceutical and businesses deploying RFID technology with a variety of products, it is important to tackle RFID tag cloning problem and improve the resistance of the RFID systems. To this end, we propose an approach for detecting cloned RFID tags in RFID systems with high detection accuracy and minimal overhead thus overcoming practical challenges in existing approaches. The proposed approach is based on consistency of dual hash collisions and modified count-min sketch vector. We evaluated the proposed approach through extensive experiments and compared it with existing baseline approaches in terms of execution time and detection accuracy under varying RFID tag cloning ratio. The results of the experiments show that the proposed approach outperforms the baseline approaches in cloned RFID tag detection accuracy.
    Matched MeSH terms: Radio Frequency Identification Device/methods*
  17. Al-Rawi HA, Yau KL, Mohamad H, Ramli N, Hashim W
    ScientificWorldJournal, 2014;2014:960584.
    PMID: 25140350 DOI: 10.1155/2014/960584
    Cognitive radio (CR) enables unlicensed users (or secondary users, SUs) to sense for and exploit underutilized licensed spectrum owned by the licensed users (or primary users, PUs). Reinforcement learning (RL) is an artificial intelligence approach that enables a node to observe, learn, and make appropriate decisions on action selection in order to maximize network performance. Routing enables a source node to search for a least-cost route to its destination node. While there have been increasing efforts to enhance the traditional RL approach for routing in wireless networks, this research area remains largely unexplored in the domain of routing in CR networks. This paper applies RL in routing and investigates the effects of various features of RL (i.e., reward function, exploitation, and exploration, as well as learning rate) through simulation. New approaches and recommendations are proposed to enhance the features in order to improve the network performance brought about by RL to routing. Simulation results show that the RL parameters of the reward function, exploitation, and exploration, as well as learning rate, must be well regulated, and the new approaches proposed in this paper improves SUs' network performance without significantly jeopardizing PUs' network performance, specifically SUs' interference to PUs.
    Matched MeSH terms: Radio*
  18. Bello H, Xiaoping Z, Nordin R, Xin J
    Sensors (Basel), 2019 Jul 12;19(14).
    PMID: 31336834 DOI: 10.3390/s19143078
    Wake-up radio is a promising approach to mitigate the problem of idle listening, which incurs additional power consumption for the Internet of Things (IoT) wireless transmission. Radio frequency (RF) energy harvesting technique allows the wake-up radio to remain in a deep sleep and only become active after receiving an external RF signal to 'wake-up' the radio, thus eliminating necessary hardware and signal processing to perform idle listening, resulting in higher energy efficiency. This review paper focuses on cross-layer; physical and media access control (PHY and MAC) approaches on passive wake-up radio based on the previous works from the literature. First, an explanation of the circuit design and system architecture of the passive wake-up radios is presented. Afterward, the previous works on RF energy harvesting techniques and the existing passive wake-up radio hardware architectures available in the literature are surveyed and classified. An evaluation of the various MAC protocols utilized for the novel passive wake-up radio technologies is presented. Finally, the paper highlights the potential research opportunities and practical challenges related to the practical implementation of wake-up technology for future IoT applications.
    Matched MeSH terms: Radio
  19. Ng KJ, Islam MT, Alevy AM, Mansor MF
    Sensors (Basel), 2020 Apr 26;20(9).
    PMID: 32357426 DOI: 10.3390/s20092456
    This paper presents an ultralow profile, low passive intermodulation (PIM), and super-wideband in-building ceiling mount antenna that covers both the cellular and public safety ultra high frequency (UHF) band for distributed antenna system (DAS) applications. The proposed antenna design utilizes a modified 2-D planar discone design concept that is miniaturized to fit into a small disc-shaped radome. The 2-D planar discone has an elliptical-shaped disc monopole and a bell-shaped ground plane, a stub at the shorting path, with asymmetrical structure and an additional proximity coupling patch to maximize the available electrical path to support the 350 MHz band range. The proposed design maximizes the radome area with a reduction of about 62% compared to similar concept type antennas. Besides, the proposed design exhibits an improved radiation pattern with null reduction compared to a typical dipole/monopole when lies at the horizontal plane. A prototype was manufactured to demonstrate the antenna performance. The VSWR and radiation pattern results agreed with the simulated results. The proposed antenna achieves a band ratio of 28.57:1 while covering a frequency range of 350-10,000 MHz. The measured passive intermodulation levels are better than -150 dBc (2 × 20 Watts) for 350, 700 and 1920 MHz bands.
    Matched MeSH terms: Radio Waves
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links