Displaying all 14 publications

Abstract:
Sort:
  1. Roney M, Huq AKMM, Issahaku AR, Soliman MES, Hossain MS, Mustafa AH, et al.
    J Biomol Struct Dyn, 2023;41(21):12186-12203.
    PMID: 36645141 DOI: 10.1080/07391102.2023.2166123
    Dengue fever is a significant public health concern throughout the world, causing an estimated 500,000 hospitalizations and 20,000 deaths each year, despite the lack of effective therapies. The DENV-2 RdRp has been identified as a potential target for the development of new and effective dengue therapies. This research's primary objective was to discover an anti-DENV inhibitor using in silico ligand- and structure-based approaches. To begin, a ligand-based pharmacophore model was developed, and 130 distinct natural products (NPs) were screened. Docking of the pharmacophore-matched compounds were performed to the active site of DENV-2 RdRp protease . Eleven compounds were identified as potential DENV-2 RdRp inhibitors based on docking energy and binding interactions. ADMET and drug-likeness were done to predict their pharmacologic, pharmacokinetic, and drug-likeproperties . Compounds ranked highest in terms of pharmacokinetics and drug-like appearances were then subjected to additional toxicity testing to determine the leading compound. Additionally, MD simulation of the lead compound was performed to confirm the docked complex's stability and the binding site determined by docking. As a result, the lead compound (compound-108) demonstrated an excellent match to the pharmacophore, a strong binding contact and affinity for the RdRp enzyme, favourable pharmacokinetics, and drug-like characteristics. In summary, the lead compound identified in this study could be a possible DENV-2 RdRp inhibitor that may be further studied on in vitro and in vivo models to develop as a drug candidate.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: RNA Replicase
  2. Kaur I, Behl T, Sehgal A, Singh S, Sharma N, Subramanian V, et al.
    Environ Sci Pollut Res Int, 2022 Sep;29(45):67685-67703.
    PMID: 35933528 DOI: 10.1007/s11356-022-22345-w
    The 2019 outbreak of corona virus disease began from Wuhan (China), transforming into a leading pandemic, posing an immense threat to the global population. The WHO coined the term nCOVID-19 for the disease on 11th February, 2020 and the International Committee of Taxonomy of Viruses named it SARS-CoV-2, on account of its similarity with SARS-CoV-1 of 2003. The infection is associated with fever, cough, pneumonia, lung damage, and ARDS along with clinical implications of lung opacities. Brief understanding of the entry target of virus, i.e., ACE2 receptors has enabled numerous treatment options as discussed in this review. The manuscript provides a holistic picture of treatment options in COVID-19, such as non-specific anti-viral drugs, immunosuppressive agents, anti-inflammatory candidates, anti-HCV, nucleotide inhibitors, antibodies and anti-parasitic, RNA-dependent RNA polymerase inhibitors, anti-retroviral, vitamins and hormones, JAK inhibitors, and blood plasma therapy. The text targets to enlist the investigations conducted on all the above categories of drugs, with respect to the COVID-19 pandemic, to accelerate their significance in hindering the disease progression. The data collected primarily targets recently published articles and most recent records of clinical trials, focusing on the last 10-year database. The current review provides a comprehensive view on the critical need of finding a suitable treatment for the currently prevalent COVID-19 disease, and an opportunity for the researchers to investigate the varying possibilities to find and optimized treatment approach to mitigate and ameliorate the chaos created by the pandemic worldwide.
    Matched MeSH terms: RNA Replicase
  3. Teoh SL, Lim YH, Lai NM, Lee SWH
    Front Microbiol, 2020;11:1857.
    PMID: 32849448 DOI: 10.3389/fmicb.2020.01857
    The outbreak of a novel coronavirus (SARS-CoV-2) in Wuhan, China in December 2019 has now become a pandemic with no approved therapeutic agent. At the moment, the genomic structure, characteristics, and pathogenic mechanisms of SARS-CoV-2 have been reported. Based upon this information, several drugs including the directly acting antivirals have been proposed to treat people with coronavirus disease 2019 (COVID-19). This rapid review aims to describe the directly acting antivirals that have been examined for use in the management of COVID-19. Searches were conducted in three electronic databases, supplemented with a search on arXiv, bioRxiv, medRxiv, ChinaXiv, ClinicalTrials.gov, and Chinese Clinical Trial Registry for studies examining the use of antivirals in COVID-19 to identify for case reports, case series, observational studies, and randomized controlled studies describing the use of antivirals in COVID-19. Data were extracted independently and presented narratively. A total of 98 studies were included, comprising of 38 published studies and 60 registered clinical trials. These drugs include the broad spectrum antivirals such as umifenovir, protease inhibitors such as lopinavir/ritonavir as well as the RNA-dependent RNA polymerase inhibitors, remdesivir, and favipiravir. Other drugs that have been used include the nucleosidase inhibitors and polymerase acidic endonuclease inhibitors which are currently approved for prevention of influenza infections. While some of the drugs appear promising in small case series and reports, more clinical trials currently in progress are required to provide higher quality evidence.
    Matched MeSH terms: RNA Replicase
  4. Hui LY, Mun CS, Sing LC, Rajak H, Karunakaran R, Ravichandran V
    Med Chem, 2023;19(3):297-309.
    PMID: 35713125 DOI: 10.2174/1573406418666220616110351
    BACKGROUND: The severe acute respiratory syndrome coronavirus-2 is causing a disaster through coronavirus disease-19 (COVID-19), affecting the world population with a high mortality rate. Although numerous scientific efforts have been made, we do not have any specific drug for COVID-19 treatment.

    OBJECTIVE: Aim of the present study was to analyse the molecular interaction of nitrogen heterocyclic based drugs (hydroxychloroquine, remdesivir and lomefloxacin) with various SARSCoV- 2 proteins (RdRp, PLPro, Mpro and spike proteins) using a molecular docking approach.

    METHODS: We have performed docking study using PyRx software, and Discovery Studio Visualizer was used to visualise the molecular interactions. The designed nitrogen heterocyclic analogues were checked for Lipinski's rule of five, Veber's Law and Adsorption, Distribution, Metabolism, and Excretion (ADME) threshold. After obtaining the docking results of existing nitrogen heterocyclic drugs, we modified the selected drugs to get molecules with better affinity against SARS-CoV-2.

    RESULTS: Hydroxychloroquine bound to RdRp, spike protein, PLPro and Mpro at -5.2, -5.1, -6.7 and -6.0 kcal/mol, while remdesivir bound to RdRp, spike protein, PLPro, and Mpro at -6.1, -6.9, -6.4 and -6.9 kcal/mol, respectively. Lomefloxacin bound to RdRp, spike protein, PLPro and Pro at -6.4, -6.6, -7.2 and -6.9 kcal/mol. ADME studies of all these compounds indicated lipophilicity and high gastro intestine absorbability. The modified drug structures possess better binding efficacy towards at least one target than their parent compounds.

    CONCLUSION: The outcome reveals that the designed nitrogen heterocyclics could contribute to developing the potent inhibitory drug SARS-CoV-2 with strong multi-targeted inhibition ability and reactivity.

    Matched MeSH terms: RNA Replicase
  5. Chan SK, Kuzuya A, Choong YS, Lim TS
    SLAS Discov, 2019 01;24(1):68-76.
    PMID: 30063871 DOI: 10.1177/2472555218791743
    The inherent ability of nucleic acids to recognize a complementary pair has gained wide popularity in DNA sensor applications. DNA molecules can be produced in bulk and easily incorporated with various nanomaterials for sensing applications. More complex designs and sophisticated DNA sensors have been reported over the years to allow DNA detection in a faster, cheaper, and more convenient manner. Here, we report a DNA sensor designed to function like a switch to turn "on" silver nanocluster (AgNC) generation in the presence of a specific DNA target. By defining the probe region sequence, we are able to tune the color of the AgNC generated in direct relation to the different targets. As a proof of concept, we used dengue RNA-dependent RNA polymerase conserved sequences from all four serotypes as targets. This method was able to distinguish each dengue serotype by generating the serotype-respective AgNCs. The DNA switch was also able to identify and amplify the correct target in a mixture of targets with good specificity. This strategy has a detection limit of between 1.5 and 2.0 µM depending on the sequence of AgNC. The DNA switch approach provides an attractive alternative for single-target or multiplex DNA detection.
    Matched MeSH terms: RNA Replicase/genetics
  6. Huq AKMM, Roney M, Dubey A, Nasir MH, Tufail A, Aluwi MFFM, et al.
    PLoS One, 2024;19(3):e0299238.
    PMID: 38483871 DOI: 10.1371/journal.pone.0299238
    BACKGROUND: Currently, there is no antiviral medication for dengue, a potentially fatal tropical infectious illness spread by two mosquito species, Aedes aegypti and Aedes albopictus. The RdRp protease of dengue virus is a potential therapeutic target. This study focused on the in silico drug discovery of RdRp protease inhibitors.

    METHODS: To assess the potential inhibitory activity of 29 phenolic acids from Theobroma cacao L. against DENV3-NS5 RdRp, a range of computational methods were employed. These included docking, drug-likeness analysis, ADMET prediction, density functional theory (DFT) calculations, and molecular dynamics (MD) simulations. The aim of these studies was to confirm the stability of the ligand-protein complex and the binding pose identified during the docking experiment.

    RESULTS: Twenty-one compounds were found to have possible inhibitory activities against DENV according to the docking data, and they had a binding affinity of ≥-37.417 kcal/mol for DENV3- enzyme as compared to the reference compound panduratin A. Additionally, the drug-likeness investigation produced four hit compounds that were subjected to ADMET screening to obtain the lead compound, catechin. Based on ELUMO, EHOMO, and band energy gap, the DFT calculations showed strong electronegetivity, favouravle global softness and chemical reactivity with considerable intra-molecular charge transfer between electron-donor to electron-acceptor groups for catechin. The MD simulation result also demonstrated favourable RMSD, RMSF, SASA and H-bonds in at the binding pocket of DENV3-NS5 RdRp for catechin as compared to panduratin A.

    CONCLUSION: According to the present findings, catechin showed high binding affinity and sufficient drug-like properties with the appropriate ADMET profiles. Moreover, DFT and MD studies further supported the drug-like action of catechin as a potential therapeutic candidate. Therefore, further in vitro and in vivo research on cocoa and its phytochemical catechin should be taken into consideration to develop as a potential DENV inhibitor.

    Matched MeSH terms: RNA Replicase
  7. Yunus MA, Lin X, Bailey D, Karakasiliotis I, Chaudhry Y, Vashist S, et al.
    J Virol, 2015 Jan 15;89(2):1218-29.
    PMID: 25392209 DOI: 10.1128/JVI.02432-14
    All members of the Caliciviridae family of viruses produce a subgenomic RNA during infection. The subgenomic RNA typically encodes only the major and minor capsid proteins, but in murine norovirus (MNV), the subgenomic RNA also encodes the VF1 protein, which functions to suppress host innate immune responses. To date, the mechanism of norovirus subgenomic RNA synthesis has not been characterized. We have previously described the presence of an evolutionarily conserved RNA stem-loop structure on the negative-sense RNA, the complementary sequence of which codes for the viral RNA-dependent RNA polymerase (NS7). The conserved stem-loop is positioned 6 nucleotides 3' of the start site of the subgenomic RNA in all caliciviruses. We demonstrate that the conserved stem-loop is essential for MNV viability. Mutant MNV RNAs with substitutions in the stem-loop replicated poorly until they accumulated mutations that revert to restore the stem-loop sequence and/or structure. The stem-loop sequence functions in a noncoding context, as it was possible to restore the replication of an MNV mutant by introducing an additional copy of the stem-loop between the NS7- and VP1-coding regions. Finally, in vitro biochemical data suggest that the stem-loop sequence is sufficient for the initiation of viral RNA synthesis by the recombinant MNV RNA-dependent RNA polymerase, confirming that the stem-loop forms the core of the norovirus subgenomic promoter.

    IMPORTANCE: Noroviruses are a significant cause of viral gastroenteritis, and it is important to understand the mechanism of norovirus RNA synthesis. Here we describe the identification of an RNA stem-loop structure that functions as the core of the norovirus subgenomic RNA promoter in cells and in vitro. This work provides new insights into the molecular mechanisms of norovirus RNA synthesis and the sequences that determine the recognition of viral RNA by the RNA-dependent RNA polymerase.

    Matched MeSH terms: RNA Replicase/metabolism
  8. Tan CW, Lai JK, Sam IC, Chan YF
    J Biomed Sci, 2014;21:14.
    PMID: 24521134 DOI: 10.1186/1423-0127-21-14
    Enterovirus 71 (EV-71) is the main etiological agent of hand, foot and mouth disease (HFMD). Recent EV-71 outbreaks in Asia-Pacific were not limited to mild HFMD, but were associated with severe neurological complications such as aseptic meningitis and brainstem encephalitis, which may lead to cardiopulmonary failure and death. The absence of licensed therapeutics for clinical use has intensified research into anti-EV-71 development. This review highlights the potential antiviral agents targeting EV-71 attachment, entry, uncoating, translation, polyprotein processing, virus-induced formation of membranous RNA replication complexes, and RNA-dependent RNA polymerase. The strategies for antiviral development include target-based synthetic compounds, anti-rhinovirus and poliovirus libraries screening, and natural compound libraries screening. Growing knowledge of the EV-71 life cycle will lead to successful development of antivirals. The continued effort to develop antiviral agents for treatment is crucial in the absence of a vaccine. The coupling of antivirals with an effective vaccine will accelerate eradication of the disease.
    Matched MeSH terms: RNA Replicase/drug effects
  9. Abba Y, Hassim H, Hamzah H, Ibrahim OE, Ilyasu Y, Bande F, et al.
    Virus Genes, 2016 Oct;52(5):640-50.
    PMID: 27142080 DOI: 10.1007/s11262-016-1345-7
    Boid inclusion body disease (BIBD) is a viral disease of boids caused by reptarenavirus. In this study, tissue from naturally infected boid snakes were homogenized and propagated in African Monkey kidney (Vero) and rat embryonic fibroblast (REF) cells. Virus replication was determined by the presence of cytopathic effect, while viral morphology was observed using transmission electron microscopy. Viral RNA was amplified using RT-PCR with primers specific for the L-segment of reptarenavirus; similarly, quantification of viral replication was done using qPCR at 24-144 h postinfection. Viral cytopathology was characterized by cell rounding and detachment in both Vero and REF cells. The viral morphology showed round-to-pleomorphic particles ranging from 105 to 150 nm which had sand-like granules. Sanger sequencing identified four closely associated reptarenavirus species from 15 (37.5 %) of the total samples tested, and these were named as follows: reptarenavirus UPM-MY 01, 02, 03, and 04. These isolates were phylogenetically closely related to the University Helsinki virus (UHV), Boa Arenavirus NL (ROUTV; BAV), and unidentified reptarenavirus L20 (URAV-L20). Comparison of deduced amino acid sequences further confirmed identities to L-protein of UHV, L-polymerase of BAV and RNA-dependent RNA polymerase of URAV-L20. Viral replication in Vero cells increased steadily from 24 to 72 h and peaked at 144 h. This is the first study in South East Asia to isolate and characterize reptarenavirus in boid snakes with BIBD.
    Matched MeSH terms: RNA Replicase/genetics
  10. Lee CC, Lin CY, Hsu HW, Yang CS
    Arch Virol, 2020 Nov;165(11):2715-2719.
    PMID: 32776255 DOI: 10.1007/s00705-020-04769-2
    We report two novel RNA viruses from yellow crazy ants, (Anoplolepis gracilipes) detected using next-generation sequencing. The complete genome sequences of the two viruses were 10,662 and 8,238 nucleotides in length, respectively, with both possessing two open reading frames with three conserved protein domains. The genome organization is characteristic of members of the genus Triatovirus in the family Dicistroviridae. The two novel viruses were tentatively named "Anoplolepis gracilipes virus 1" and "Anoplolepis gracilipes virus 2" (AgrV-1 and AgrV-2). Phylogenetic analyses based on amino acid sequences of the non-structural polyprotein (ORF1) suggest that the two viruses are triatovirus-like viruses. This is the first report on the discovery of novel triatovirus-like viruses in yellow crazy ants with a description of their genome structure (two ORFs and conserved domains of RNA helicase, RNA-dependent RNA polymerase, and capsid protein), complete sequences, and viral prevalence across the Asia-Pacific region.
    Matched MeSH terms: RNA Replicase/genetics
  11. Panya A, Songprakhon P, Panwong S, Jantakee K, Kaewkod T, Tragoolpua Y, et al.
    Molecules, 2021 May 23;26(11).
    PMID: 34071102 DOI: 10.3390/molecules26113118
    Dengue virus (DENV) infection causes mild to severe illness in humans that can lead to fatality in severe cases. Currently, no specific drug is available for the treatment of DENV infection. Thus, the development of an anti-DENV drug is urgently required. Cordycepin (3'-deoxyadenosine), which is a major bioactive compound in Cordyceps (ascomycete) fungus that has been used for centuries in Chinese traditional medicine, was reported to exhibit antiviral activity. However, the anti-DENV activity of cordycepin is unknown. We hypothesized that cordycepin exerts anti-DENV activity and that, as an adenosine derivative, it inhibits DENV replication. To test this hypothesis, we investigated the anti-DENV activity of cordycepin in DENV-infected Vero cells. Cordycepin treatment significantly decreased DENV protein at a half-maximal effective concentration (EC50) of 26.94 μM. Moreover, DENV RNA was dramatically decreased in cordycepin-treated Vero cells, indicating its effectiveness in inhibiting viral RNA replication. Via in silico molecular docking, the binding of cordycepin to DENV non-structural protein 5 (NS5), which is an important enzyme for RNA synthesis, at both the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, was predicted. The results of this study demonstrate that cordycepin is able to inhibit DENV replication, which portends its potential as an anti-dengue therapy.
    Matched MeSH terms: RNA Replicase/metabolism
  12. Zandi K, Bassit L, Amblard F, Cox BD, Hassandarvish P, Moghaddam E, et al.
    PMID: 31061163 DOI: 10.1128/AAC.00397-19
    Dengue virus (DENV) and Japanese encephalitis virus (JEV) are important arthropod-borne viruses from the Flaviviridae family. DENV is a global public health problem with significant social and economic impacts, especially in tropical and subtropical areas. JEV is a neurotropic arbovirus endemic to east and southeast Asia. There are no U.S. FDA-approved antiviral drugs available to treat or to prevent DENV and JEV infections, leaving nearly one-third of the world's population at risk for infection. Therefore, it is crucial to discover potent antiviral agents against these viruses. Nucleoside analogs, as a class, are widely used for the treatment of viral infections. In this study, we discovered nucleoside analogs that possess potent and selective anti-JEV and anti-DENV activities across all serotypes in cell-based assay systems. Both viruses were susceptible to sugar-substituted 2'-C-methyl analogs with either cytosine or 7-deaza-7-fluoro-adenine nucleobases. Mouse studies confirmed the anti-DENV activity of these nucleoside analogs. Molecular models were assembled for DENV serotype 2 (DENV-2) and JEV RNA-dependent RNA polymerase replication complexes bound to nucleotide inhibitors. These models show similarities between JEV and DENV-2, which recognize the same nucleotide inhibitors. Collectively, our findings provide promising compounds and a structural rationale for the development of direct-acting antiviral agents with dual activity against JEV and DENV infections.
    Matched MeSH terms: RNA Replicase/metabolism; RNA Replicase/chemistry
  13. Chong LC, Ganesan H, Yong CY, Tan WS, Ho KL
    PLoS One, 2019;14(2):e0211740.
    PMID: 30707739 DOI: 10.1371/journal.pone.0211740
    Macrobrachium rosenbergii nodavirus (MrNV) is the causative agent of white tail disease (WTD) which seriously impedes the production of the giant freshwater prawn and has a major economic impact. MrNV contains two segmented RNA molecules, which encode the RNA dependent RNA polymerase (RdRp) and the capsid protein (MrNV-CP) containing 371 amino acid residues. MrNV-CP comprises of the Shell (S) and the Protruding (P) domains, ranging from amino acid residues 1-252 and 253-371, respectively. The P-domain assembles into dimeric protruding spikes, and it is believed to be involved in host cell attachment and internalization. In this study, the recombinant P-domain of MrNV-CP was successfully cloned and expressed in Escherichia coli, purified with an immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC) up to ~90% purity. Characterization of the purified recombinant P-domain with SEC revealed that it formed dimers, and dynamic light scattering (DLS) analysis demonstrated that the hydrodynamic diameter of the dimers was ~6 nm. Circular dichroism (CD) analysis showed that the P-domain contained 67.9% of beta-sheets, but without alpha-helical structures. This is in good agreement with the cryo-electron microscopic analysis of MrNV which demonstrated that the P-domain contains only beta-stranded structures. Our findings of this study provide essential information for the production of the P-domain of MrNV-CP that will aid future studies particularly studies that will shed light on anti-viral drug discovery and provide an understanding of virus-host interactions and the viral pathogenicity.
    Matched MeSH terms: RNA Replicase
  14. Radhakrishnan, N., Lam, K. W., Norhaizan, M. E.
    MyJurnal
    Carica papaya (papaya) fruits are available throughout the world and it is well accepted as food or as a quasi-drug. Aqueous papaya leaves extract have been used as treatment for dengue fever. This prompted us to carry out the docking study on these nine selected ligands (phyto-constituents of papaya) which are carpaine, dehydrocarpaine I and II, cardenolide, p-coumaric acid, chlorogenic acid, caricaxanthin, violaxanthin and zeaxanthin. These phytoconstituents were evaluated on the docking behaviour of dengue serotype 3 RNA-dependent RNA polymerase (RdRp); influenza A (H1N9) virus neuraminidase (NA); chikungunya virus glycoprotein (E3-E2-E1) and chikungunya virus non-structural protein2 (nsP2) protease using Discovery Studio Version 3.1. In addition, molecular physicochemical, drug-likeness, ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) and TOPKAT (Toxicity Prediction by Komputer Assisted Technology) analyses were done. The molecular physicochemical analysis revealed that cardenolide and p-coumaric acid (2 ligands) complied with Lipinski’s rule of five. Dehydrocarpaine II, cardenolide, caricaxanthin, violaxanthin and zeaxanthin all the five ligands were predicted to have plasma protein binding (PPB) effect. Docking studies and binding free energy calculations revealed that p-coumaric acid exhibited very least binding energy irrespective of its target protein. Hence, the results of this present study exhibited the potential of these nine ligands as antiviral agent.
    Matched MeSH terms: RNA Replicase
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links