Displaying all 4 publications

Abstract:
Sort:
  1. Budiman C, Lindang HU, Cheong BE, Rodrigues KF
    Protein J, 2018 06;37(3):270-279.
    PMID: 29761378 DOI: 10.1007/s10930-018-9772-z
    SIB1 FKBP22 is a peptidyl prolyl cis-trans isomerase (PPIase) member from a psychrotrophic bacterium, Shewanella sp. SIB1, consisting of N- and C-domains responsible for dimerization and catalytic PPIase activity, respectively. This protein was assumed to be involved in cold adaptation of SIB1 cells through its dual activity of PPIase activity and chaperone like-function. Nevertheless, the catalytic inhibition by FK506 and its substrate specificity remain unknown. Besides, ability of SIB1 FKBP22 to inhibit phosphatase activity of calcinuerin is also interesting to be studied since it may reflect wider cellular functions of SIB1 FKBP22. In this study, we found that wild type (WT) SIB1 FKBP22 bound to FK506 with IC50 of 77.55 nM. This value is comparable to that of monomeric mutants (NNC-FKBP22, C-domain+ and V37R/L41R mutants), yet significantly higher than that of active site mutant (R142A). In addition, WT SIB1 FKBP22 and monomeric variants were found to prefer hydrophobic residues preceding proline. Meanwhile, R142A mutant has wider preferences on bulkier hydrophobic residues due to increasing hydrophobicity and binding pocket space. Surprisingly, in the absence of FK506, SIB1 FKBP22 and its variants inhibited, with the exception of N-domain, calcineurin phosphatase activity, albeit low. The inhibition of SIB1 FKBP22 by FK506 is dramatically increased in the presence of FK506. Altogether, we proposed that local structure at substrate binding pocket of C-domain plays crucial role for the binding of FK506 and peptide substrate preferences. In addition, C-domain is essential for inhibition, while dimerization state is important for optimum inhibition through efficient binding to calcineurin.
    Matched MeSH terms: Bacterial Proteins/chemical synthesis*
  2. Alhoot MA, Rathinam AK, Wang SM, Manikam R, Sekaran SD
    Int J Med Sci, 2013;10(6):719-29.
    PMID: 23630436 DOI: 10.7150/ijms.5037
    Despite the importance of DENV as a human pathogen, there is no specific treatment or protective vaccine. Successful entry into the host cells is necessary for establishing the infection. Recently, the virus entry step has become an attractive therapeutic strategy because it represents a barrier to suppress the onset of the infection. Four putative antiviral peptides were designed to target domain III of DENV-2 E protein using BioMoDroid algorithm. Two peptides showed significant inhibition of DENV when simultaneously incubated as shown by plaque formation assay, RT-qPCR, and Western blot analysis. Both DET4 and DET2 showed significant inhibition of virus entry (84.6% and 40.6% respectively) using micromolar concentrations. Furthermore, the TEM images showed that the inhibitory peptides caused structural abnormalities and alteration of the arrangement of the viral E protein, which interferes with virus binding and entry. Inhibition of DENV entry during the initial stages of infection can potentially reduce the viremia in infected humans resulting in prevention of the progression of dengue fever to the severe life-threatening infection, reduce the infected vector numbers, and thus break the transmission cycle. Moreover these peptides though designed against the conserved region in DENV-2 would have the potential to be active against all the serotypes of dengue and might be considered as Hits to begin designing and developing of more potent analogous peptides that could constitute as promising therapeutic agents for attenuating dengue infection.
    Matched MeSH terms: Viral Envelope Proteins/chemical synthesis
  3. Agyei D, Ahmed I, Akram Z, Iqbal HM, Danquah MK
    Protein Pept Lett, 2017;24(2):94-101.
    PMID: 28017145 DOI: 10.2174/0929866523666161222150444
    Bioactive proteins and peptides are recognised as novel therapeutic molecules with varying biological properties for potential medical applications. Development of protein and peptidebased therapeutic products for human use is growing steadily as they continue to receive an increasing rate of approval by the United States Food and Drugs Administration (US FDA). In this short review, we describe the current status and methodologies involved in the synthesis of protein and peptide biopharmaceuticals with an emphasis on the drivers and restrains to their exploitation in the therapeutic products sector.
    Matched MeSH terms: Proteins/chemical synthesis*
  4. Intan-Shameha AR, Divers TJ, Morrow JK, Graves A, Olsen E, Johnson AL, et al.
    Res Vet Sci, 2017 Oct;114:401-405.
    PMID: 28750210 DOI: 10.1016/j.rvsc.2017.07.020
    The current study aimed at the investigating the potential use of phosphorylated neurofilament H (pNF-H) as a diagnostic biomarker for neurologic disorders in the horse. Paired serum and cerebrospinal fluid (CSF) samples (n=88) and serum only (n=30) were obtained from horses diagnosed with neurologic disorders and clinically healthy horses as control. The neurologic horses consisted of equine protozoal myeloencephalitis (EPM) (38 cases) and cervical vertebral malformation (CVM) (23 cases). Levels of pNF-H were determined using an ELISA. The correlation between CSF and serum concentrations of pNF-H was evaluated using Spearman's Rank test and the significance of the difference among the groups was assessed using a nonparametric test. Horses had higher pNF-H levels in the CSF than serum. Horses afflicted with EPM had significantly higher serum pNF-H levels in comparison to controls or CVM cases. The correlation between CSF and serum pNF-H levels was poor in both the whole study population and among subgroups of horses included in the study. There was significant association between the likelihood of EPM and the concentrations of pNF-H in either the serum or CSF. These data suggest that pNF-H could be detected in serum and CSF samples from neurologic and control horses. This study demonstrated that pNF-H levels in serum and CSF have the potential to provide objective information to help in the early diagnosis of horses afflicted with neurologic disorders.
    Matched MeSH terms: Neurofilament Proteins/chemical synthesis*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links