METHODS: The details of patients diagnosed with unresectable NSCLC treated with TKI followed by lung resection from 2010 to 2020 were retrieved from our database. The primary endpoint was 3-year overall survival (OS), whereas the secondary endpoints were a 2-year progression-free survival (PFS), feasibility, and the safety of pulmonary resection. The statistical tests used were Fisher's exact test, Kruskal Wallis test, Kaplan-Meier method, Cox proportional hazards model, and Firth correction.
RESULTS: Nineteen out of thirty-two patients were selected for the study. The patients underwent lung surgery after confirmed tumor regression (17 [89.5%]) and regrowth (two [10.5%]). All surgeries were performed via video-assisted thoracoscopic surgery: 14 (73.7%) lobectomies and five (26.3%) sublobar resections after a median duration of 5 months of TKI. Two (10.5%) postoperative complications and no 30-day postoperative mortality were observed. The median postoperative follow-up was 22 months. The 2-year PFS and 3-year OS rates were 43.9% and 61.5%, respectively. Patients who underwent surgery for regressed disease showed a significantly better OS than for regrowth disease (HR=0.086, 95% CI 0.008-0.957, p=0.046). TKI-adjuvant demonstrated a better PFS than non-TKI adjuvant (HR=0.146, 95% CI 0.027-0.782, p=0.025).
CONCLUSION: Lung surgery after TKI treatment is feasible and safe and prolongs survival via local control and directed consequential therapy. Lung surgery should be adopted in multimodality therapy for initially unresectable NSCLC.
MATERIALS AND METHODS: Key efficacy endpoints were blinded independent review committee (BIRC)-assessed overall response rate (ORR) and duration of response (DOR) evaluated per Response Evaluation Criteria in Solid Tumors v1.1. Other efficacy endpoints were investigator-assessed ORR and DOR; BIRC- and investigator-assessed progression-free survival (PFS) and disease control rate; overall survival (OS). Safety was evaluated by frequency and severity of adverse events.
RESULTS: At final data cutoff (6 March 2020), 198 treatment-naïve patients were included in efficacy analysis, of which 74 (37%) comprised the Asian subset; 450-mg fed (n=29), 600-mg fed (n=19), and 750-mg fasted (n=26). Baseline characteristics were mostly comparable across study arms. At baseline, more patients in 450-mg fed arm (44.8%) had brain metastases than in 750-mg fasted arm (26.9%). Per BIRC, patients in the 450-mg fed arm had a numerically higher ORR, 24-month DOR rate and 24-month PFS rate than the 750-mg fasted arm. The 36-month OS rate was 93.1% in 450-mg fed arm and 70.9% in 750-mg fasted arm. Any-grade GI toxicity occurred in 82.8% and 96.2% of patients in the 450-mg fed and 750-mg fasted arms, respectively.
CONCLUSION: Asian patients with ALK+ advanced/metastatic NSCLC treated with ceritinib 450-mg fed showed numerically higher efficacy and lower GI toxicity than 750-mg fasted patients.
METHODS: Treatment-naive patients with EGFR-mutated advanced NSCLC were randomized one-to-one to lazertinib (240 mg/d) or gefitinib (250 mg/d). Patients with asymptomatic or stable CNS metastases were included if any planned radiation, surgery, or steroids were completed more than 2 weeks before randomization. For patients with CNS metastases confirmed at screening or subsequently suspected, CNS imaging was performed every 6 weeks for 18 months, then every 12 weeks. End points assessed by blinded independent central review and Response Evaluation Criteria in Solid Tumors version 1.1 included intracranial progression-free survival, intracranial objective response rate, and intracranial duration of response.
RESULTS: Of the 393 patients enrolled in LASER301, 86 (lazertinib, n = 45; gefitinib, n = 41) had measurable and or non-measurable baseline CNS metastases. The median intracranial progression-free survival in the lazertinib group was 28.2 months (95% confidence interval [CI]: 14.8-28.2) versus 8.4 months (95% CI: 6.7-not reached [NR]) in the gefitinib group (hazard ratio = 0.42, 95% CI: 0.20-0.89, p = 0.02). Among patients with measurable CNS lesions, the intracranial objective response rate was numerically higher with lazertinib (94%; n = 17) versus gefitinib (73%; n = 11, p = 0.124). The median intracranial duration of response with lazertinib was NR (8.3-NR) versus 6.3 months (2.8-NR) with gefitinib. Tolerability was similar to the overall LASER301 population.
CONCLUSIONS: In patients with CNS metastases, lazertinib significantly improved intracranial progression-free survival compared with gefitinib, with more durable responses.
PATIENTS AND METHODS: Patients were 18 years and older with no previous systemic anticancer therapy. Neurologically stable patients with CNS metastases were allowed. Patients were randomly assigned 1:1 to lazertinib 240 mg once daily orally or gefitinib 250 mg once daily orally, stratified by mutation status and race. The primary end point was investigator-assessed progression-free survival (PFS) by RECIST v1.1.
RESULTS: Overall, 393 patients received double-blind study treatment across 96 sites in 13 countries. Median PFS was significantly longer with lazertinib than with gefitinib (20.6 v 9.7 months; hazard ratio [HR], 0.45; 95% CI, 0.34 to 0.58; P < .001). The PFS benefit of lazertinib over gefitinib was consistent across all predefined subgroups. The objective response rate was 76% in both groups (odds ratio, 0.99; 95% CI, 0.62 to 1.59). Median duration of response was 19.4 months (95% CI, 16.6 to 24.9) with lazertinib versus 8.3 months (95% CI, 6.9 to 10.9) with gefitinib. Overall survival data were immature at the interim analysis (29% maturity). The 18-month survival rate was 80% with lazertinib and 72% with gefitinib (HR, 0.74; 95% CI, 0.51 to 1.08; P = .116). Observed safety of both treatments was consistent with their previously reported safety profiles.
CONCLUSION: Lazertinib demonstrated significant efficacy improvement compared with gefitinib in the first-line treatment of EGFR-mutated advanced NSCLC, with a manageable safety profile.
RESULTS: In total, 12 different BCR::ABL1 KD mutations were identified by SS in 22.6% (19/84) of patients who were resistant to TKI treatment. Interestingly, NGS analysis of the same patient group revealed an additional four different BCR::ABL1 KD mutations in 27.4% (23/84) of patients. These mutations are M244V, A344V, E355A, and E459K with variant read frequency below 15%. No mutation was detected in 18 patients with optimal response to TKI therapy. Resistance to TKIs is associated with the acquisition of additional mutations in BCR::ABL1 KD after treatment with TKIs. Additionally, the use of NGS is advised for accurately determining the mutation status of BCR::ABL1 KD, particularly in cases where the allele frequency is low, and for identifying mutations across multiple exons simultaneously. Therefore, the utilization of NGS as a diagnostic platform for this test is very promising to guide therapeutic decision-making.