Displaying all 18 publications

Abstract:
Sort:
  1. Sadollah A, Bahreininejad A
    J Mech Behav Biomed Mater, 2011 Oct;4(7):1384-95.
    PMID: 21783149 DOI: 10.1016/j.jmbbm.2011.05.009
    Despite dental implantation being a great success, one of the key issues facing it is a mismatch of mechanical properties between engineered and native biomaterials, which makes osseointegration and bone remodeling problematical. Functionally graded material (FGM) has been proposed as a potential upgrade to some conventional implant materials such as titanium for selection in prosthetic dentistry. The idea of an FGM dental implant is that the property would vary in a certain pattern to match the biomechanical characteristics required at different regions in the hosting bone. However, matching the properties does not necessarily guarantee the best osseointegration and bone remodeling. Little existing research has been reported on developing an optimal design of an FGM dental implant for promoting long-term success. Based upon remodeling results, metaheuristic algorithms such as the genetic algorithms (GAs) and simulated annealing (SA) have been adopted to develop a multi-objective optimal design for FGM implantation design. The results are compared with those in literature.
    Matched MeSH terms: Dental Prosthesis Design/methods*
  2. Pirouzi G, Abu Osman NA, Eshraghi A, Ali S, Gholizadeh H, Wan Abas WA
    ScientificWorldJournal, 2014;2014:849073.
    PMID: 25197716 DOI: 10.1155/2014/849073
    Socket is an important part of every prosthetic limb as an interface between the residual limb and prosthetic components. Biomechanics of socket-residual limb interface, especially the pressure and force distribution, have effect on patient satisfaction and function. This paper aimed to review and evaluate studies conducted in the last decades on the design of socket, in-socket interface pressure measurement, and socket biomechanics. Literature was searched to find related keywords with transtibial amputation, socket-residual limb interface, socket measurement, socket design, modeling, computational modeling, and suspension system. In accordance with the selection criteria, 19 articles were selected for further analysis. It was revealed that pressure and stress have been studied in the last decaeds, but quantitative evaluations remain inapplicable in clinical settings. This study also illustrates prevailing systems, which may facilitate improvements in socket design for improved quality of life for individuals ambulating with transtibial prosthesis. It is hoped that the review will better facilitate the understanding and determine the clinical relevance of quantitative evaluations.
    Matched MeSH terms: Prosthesis Design/methods*
  3. Haider KG, Lewis GR
    Quintessence Int, 1994 Jan;25(1):23-6.
    PMID: 8190877
    A variety of problems faces the prosthodontist attempting reconstruction of maxillary defects. There are various treatment options for patients requiring a partial maxillectomy and an obturator prosthesis. Reduced adaptability makes it difficult for the patient to learn to use a new appliance, unless existing skills can be employed. It is therefore helpful to reproduce familiar features of a patient's existing obturator, especially if this has been used successfully over a transition period.
    Matched MeSH terms: Dental Prosthesis Design/methods*
  4. B Jamayet N, J Abdullah Y, A Rajion Z, Husein A, K Alam M
    Bull. Tokyo Dent. Coll., 2017;58(2):117-124.
    PMID: 28724860 DOI: 10.2209/tdcpublication.2016-0021
    The wax sculpting of a maxillofacial prosthesis is challenging, time-consuming, and requires great skill. Rapid prototyping (RP) systems allow these hurdles to be overcome by enabling the creation of a customized 3D model of the desired prosthesis. Geomagic and Mimics are the most suitable software programs with which to design such prostheses. However, due to the high cost of these applications and the special training required to operate them, they are not widely used. Additionally, ill-fitting margins and other discrepancies in the final finished products of RP systems are also inevitable. Therefore, this process makes further treatment planning difficult for the maxillofacial prosthodontist. Here, we report the case of a 62-year-old woman who attended our clinic. Initially, she had presented with a right facial defect. This was later diagnosed as a squamous cell carcinoma and resected. The aim of this report is to describe a new technique for the 3D printing of facial prostheses which involves the combined use of open-source software, an RP system, and conventional methods of fabrication. The 3D design obtained was used to fabricate a maxillofacial prosthesis to restore the defect. The patient was happy with the esthetic outcome. This approach is relatively easy and cheap, does not require a high degree of non-medical training, and is beneficial in terms of clinical outcome.
    Matched MeSH terms: Prosthesis Design/methods
  5. Abd Razak NA, Abu Osman NA, Gholizadeh H, Ali S
    Biomed Eng Online, 2014 Apr 23;13:49.
    PMID: 24755242 DOI: 10.1186/1475-925X-13-49
    BACKGROUND: The design and performance of a new development prosthesis system known as biomechatronics wrist prosthesis is presented in this paper. The prosthesis system was implemented by replacing the Bowden tension cable of body powered prosthesis system using two ultrasonic sensors, two servo motors and microcontroller inside the prosthesis hand for transradial user.

    METHODS: The system components and hand prototypes involve the anthropometry, CAD design and prototyping, biomechatronics engineering together with the prosthetics. The modeler construction of the system develop allows the ultrasonic sensors that are placed on the shoulder to generate the wrist movement of the prosthesis. The kinematics of wrist movement, which are the pronation/supination and flexion/extension were tested using the motion analysis and general motion of human hand were compared. The study also evaluated the require degree of detection for the input of the ultrasonic sensor to generate the wrist movements.

    RESULTS: The values collected by the vicon motion analysis for biomechatronics prosthesis system were reliable to do the common tasks in daily life. The degree of the head needed to bend to give the full input wave was about 45°-55° of rotation or about 14 cm-16 cm. The biomechatronics wrist prosthesis gave higher degree of rotation to do the daily tasks but did not achieve the maximum degree of rotation.

    CONCLUSION: The new development of using sensor and actuator in generating the wrist movements will be interesting for used list in medicine, robotics technology, rehabilitations, prosthetics and orthotics.

    Matched MeSH terms: Prosthesis Design/methods*
  6. Oshkour AA, Talebi H, Shirazi SF, Bayat M, Yau YH, Tarlochan F, et al.
    ScientificWorldJournal, 2014;2014:807621.
    PMID: 25302331 DOI: 10.1155/2014/807621
    This study is focused on finite element analysis of a model comprising femur into which a femoral component of a total hip replacement was implanted. The considered prosthesis is fabricated from a functionally graded material (FGM) comprising a layer of a titanium alloy bonded to a layer of hydroxyapatite. The elastic modulus of the FGM was adjusted in the radial, longitudinal, and longitudinal-radial directions by altering the volume fraction gradient exponent. Four cases were studied, involving two different methods of anchoring the prosthesis to the spongy bone and two cases of applied loading. The results revealed that the FG prostheses provoked more SED to the bone. The FG prostheses carried less stress, while more stress was induced to the bone and cement. Meanwhile, less shear interface stress was stimulated to the prosthesis-bone interface in the noncemented FG prostheses. The cement-bone interface carried more stress compared to the prosthesis-cement interface. Stair climbing induced more harmful effects to the implanted femur components compared to the normal walking by causing more stress. Therefore, stress shielding, developed stresses, and interface stresses in the THR components could be adjusted through the controlling stiffness of the FG prosthesis by managing volume fraction gradient exponent.
    Matched MeSH terms: Prosthesis Design/methods*
  7. Gholizadeh H, Abu Osman NA, Lúvíksdóttir Á, Eshraghi A, Kamyab M, Wan Abas WA
    Prosthet Orthot Int, 2011 Dec;35(4):360-4.
    PMID: 21975850 DOI: 10.1177/0309364611423130
    Good suspension lessens the pistoning (vertical displacement) of the residual limb inside the prosthetic socket. Several methods are used for measuring the pistoning.
    Matched MeSH terms: Prosthesis Design/methods*
  8. Omar H, Atta O, El-Mowafy O, Khan SA
    J Dent, 2010;38 Suppl 2:e95-9.
    PMID: 20493232 DOI: 10.1016/j.jdent.2010.05.006
    To determine the effect of thickness of porcelain veneers constructed from CAD-CAM on their final color when two resin cements were used.
    Matched MeSH terms: Dental Prosthesis Design/methods
  9. Noroozi S, Ong ZC, Khoo SY, Aslani N, Sewell P
    Prosthet Orthot Int, 2019 Feb;43(1):62-70.
    PMID: 30051756 DOI: 10.1177/0309364618789449
    BACKGROUND:: The current method of prescribing composite running-specific energy-storing-and-returning feet is subjective and is based only on the amputee's static body weight/mass.

    OBJECTIVES:: The aim was to investigate their dynamic characteristics and create a relationship between these dynamic data and the prescription of foot.

    STUDY DESIGN:: Experimental Assessment.

    METHODS:: This article presents the modal analysis results of the full range of Össur Flex-Run™ running feet that are commercially available (1LO-9LO) using experimental modal analysis technique under a constant mass at 53 kg and boundary condition.

    RESULTS:: It was shown that both the undamped natural frequency and stiffness increase linearly from the lowest to the highest stiffness category of foot which allows for a more informed prescription of foot when tuning to a matched natural frequency. The low damping characteristics determined experimentally that ranged between 1.5% and 2.0% indicates that the feet require less input energy to maintain the steady-state cyclic motion before take-off from the ground. An analysis of the mode shapes also showed a unique design feature of these feet that is hypothesised to enhance their performance.

    CONCLUSION:: A better understanding of dynamic characteristics of the feet can help tune the feet to the user's requirements in promoting a better gait performance.

    CLINICAL RELEVANCE: The dynamic data determined from this study are needed to better inform the amputees in predicting the natural frequency of the foot prescribed. The amputees can intuitively tune the cyclic body rhythm during walking or running to match with the natural frequency. This could eventually promote a better gait performance.

    Matched MeSH terms: Prosthesis Design/methods*
  10. Abu Osman NA, Gholizadeh H, Eshraghi A, Wan Abas WAB
    Prosthet Orthot Int, 2017 Oct;41(5):476-483.
    PMID: 28946824 DOI: 10.1177/0309364616670396
    OBJECTIVES: This study aimed to evaluate and compare a newly designed suspension system with a common suspension in the market.

    STUDY DESIGN: Prospective study.

    METHODS: Looped liners with hook fastener and Iceross Dermo Liner with pin/lock system were mechanically tested using a tensile testing machine in terms of system safety. A total of 10 transtibial amputees participated in this study and were asked to use these two different suspension systems. The pistoning was measured between the liner and socket through a photographic method. Three static axial loading conditions were implemented, namely, 30, 60, and 90 N. Furthermore, subjective feedback was obtained.

    RESULTS: Tensile test results showed that both systems could safely tolerate the load applied to the prosthesis during ambulation. Clinical evaluation confirmed extremely low pistoning in both systems (i.e. less than 0.4 cm after adding 90 N traction load to the prosthesis). Subjective feedback also showed satisfaction with both systems. However, less traction at the end of the residual limb was reported while looped liner was used.

    CONCLUSION: The looped liner with hook fastener is safe and a good alternative for individuals with transtibial amputation as this system could solve some problems with the current systems. Clinical relevance The looped liner and hook fastener were shown to be good alternative suspension for people with lower limb amputation especially those who have difficulty to use and align the pin/lock systems. This system could safely tolerate centrifugal forces applied to the prosthesis during normal and fast walking.

    Matched MeSH terms: Prosthesis Design/methods*
  11. Abd Razak NA, Abu Osman NA, Gholizadeh H, Ali S
    Biomed Eng Online, 2014;13:134.
    PMID: 25208636 DOI: 10.1186/1475-925X-13-134
    Understanding of kinematics force applied at the elbow is important in many fields, including biomechanics, biomedical engineering and rehabilitation. This paper provides a comparison of a mathematical model of elbow joint using three different types of prosthetics for transhumeral user, and characterizes the forces required to overcome the passive mechanical of the prosthetics at the residual limb.
    Matched MeSH terms: Prosthesis Design/methods
  12. Baharuddin MY, Salleh ShH, Zulkifly AH, Lee MH, Mohd Noor A
    Biomed Res Int, 2014;2014:692328.
    PMID: 25025068 DOI: 10.1155/2014/692328
    A morphology study was essential to the development of the cementless femoral stem because accurate dimensions for both the periosteal and endosteal canal ensure primary fixation stability for the stem, bone interface, and prevent stress shielding at the calcar region. This paper focused on a three-dimensional femoral model for Asian patients that applied preoperative planning and femoral stem design. We measured various femoral parameters such as the femoral head offset, collodiaphyseal angle, bowing angle, anteversion, and medullary canal diameters from the osteotomy level to 150 mm below the osteotomy level to determine the position of the isthmus. Other indices and ratios for the endosteal canal, metaphyseal, and flares were computed and examined. The results showed that Asian femurs are smaller than Western femurs, except in the metaphyseal region. The canal flare index (CFI) was poorly correlated (r < 0.50) to the metaphyseal canal flare index (MCFI), but correlated well (r = 0.66) with the corticomedullary index (CMI). The diversity of the femoral size, particularly in the metaphyseal region, allows for proper femoral stem design for Asian patients, improves osseointegration, and prolongs the life of the implant.
    Matched MeSH terms: Prosthesis Design/methods
  13. Ishak MI, Kadir MR, Sulaiman E, Kasim NH
    Int J Oral Maxillofac Implants, 2013 May-Jun;28(3):e151-60.
    PMID: 23748334 DOI: 10.11607/jomi.2304
    To compare the extramaxillary approach with the widely used intrasinus approach via finite element method.
    Matched MeSH terms: Dental Prosthesis Design/methods*
  14. Ishak MI, Abdul Kadir MR, Sulaiman E, Abu Kasim NH
    Int J Oral Maxillofac Surg, 2012 Sep;41(9):1077-89.
    PMID: 22575179 DOI: 10.1016/j.ijom.2012.04.010
    The aim of this study was to compare two different types of surgical approaches, intrasinus and extramaxillary, for the placement of zygomatic implants to treat atrophic maxillae. A computational finite element simulation was used to analyze the strength of implant anchorage for both approaches in various occlusal loading locations. Three-dimensional models of the craniofacial structures surrounding a region of interest, soft tissue and framework were developed using computed tomography image datasets. The implants were modelled using computer-aided design software. The bone was assumed to be linear isotropic with a stiffness of 13.4 GPa, and the implants were assumed to be made of titanium with a stiffness of 110 GPa. Masseter forces of 300 N were applied at the zygomatic arch, and occlusal loads of 150 N were applied vertically onto the framework surface at different locations. The intrasinus approach demonstrated more satisfactory results and could be a viable treatment option. The extramaxillary approach could also be recommended as a reasonable treatment option, provided some improvements are made to address the cantilever effects seen with that approach.
    Matched MeSH terms: Dental Prosthesis Design/methods*
  15. Mohd Hawari N, Jawaid M, Md Tahir P, Azmeer RA
    Disabil Rehabil Assist Technol, 2017 Nov;12(8):868-874.
    PMID: 28068847 DOI: 10.1080/17483107.2016.1269209
    The aim of this case study was to explore patient satisfaction with the quality of prosthetic leg sockets intended for persons with lower limb amputations. A qualitative study based on in-depth interviews, preceded by a questionnaire session, was carried out with patients from the Rehabilitation Center and Hospital in Malaysia. Twelve out-patient and in-patient amputees with lower limb amputations, specifically below-knee amputations, were chosen randomly. The analysis of patients' narratives aimed to identify the functional and esthetic characteristics of currently used prosthetic leg sockets and any problems related to them. The obtained results indicated that out of the 12 participants, 41.7% and 25% were satisfied and somewhat satisfied with their current prosthetic sockets. Durability and comfort were rated by the participants as the most important characteristics of prosthetic sockets, with 83.3%. As regards the esthetic appearance of the socket, 66.7% of the respondents considered that the most important feature was the material from which the socket was fabricated. Thus, we conclude that current satisfaction levels with the quality of prosthetic sockets among amputees in Malaysia are suitable, prosthesis being preferred by many amputees. The results can be used to direct future research on cosmesis and functionality of prosthetic socket design. Implications for Rehabilitation Case study will help participants to get cost effective prosthetic leg socket. Develop prosthetic leg socket comfortable as comparative to existing one. Help Malaysian government to make policy to develop local prosthetic leg socket at affordable price.
    Study site: Cheras Rehabilitation Hospital in Kuala Lumpur, Perkeso Rehab Center in Melaka, Pusat Latihan dan Perindustrian Bangi and Rumah Insaniah Tun Dr Siti Hasmah Ptaling Jaya in Selangor, Malaysia
    Matched MeSH terms: Prosthesis Design/methods*
  16. Abdullah AM, Rahim TNAT, Hamad WNFW, Mohamad D, Akil HM, Rajion ZA
    Dent Mater, 2018 11;34(11):e309-e316.
    PMID: 30268678 DOI: 10.1016/j.dental.2018.09.006
    OBJECTIVE: To compare the mechanical and biological properties of newly developed hybrid ceramics filled and unfilled polyamide 12 (PA 12) for craniofacial reconstruction via a fused deposition modelling (FDM) framework.

    METHODS: 15wt% of zirconia (ZrO2) as well as 30, 35, and 40wt% of beta-tricalcium phosphate (β-TCP) were compounded with PA 12, followed by the fabrication of filament feedstocks using a single screw extruder. The fabricated filament feedstocks were used to print the impact specimens. The melt flow rate, tensile properties of fabricated filament feedstocks, and 3D printed impact properties of the specimens were assessed using melt flow indexer, universal testing machine, and Izod pendulum tester, respectively. The microstructure of selected filament feedstocks and broken impact specimens were analysed using a field emission scanning electron microscope and universal testing machine. Human periodontal ligament fibroblast cells (HPdLF) were used to evaluate the cytotoxicity of the materials by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid) (MTT) assay.

    RESULTS: Hybrid ceramics filled PA 12 indicated sufficient flowability for FDM 3D printing. The tensile strength of hybrid ceramics filled PA 12 filament feedstocks slightly reduced as compared to unfilled PA 12. However, the tensile modulus and impact strength of hybrid ceramics filled PA 12 increased by 8%-31% and 98%-181%, respectively. A significant increase was also detected in the cell viability of the developed composites at concentrations of 12.5, 25, 50 and 100mg/ml.

    SIGNIFICANCE: The newly developed hybrid ceramics filled PA 12 filament feedstock with improved properties is suitable for an FDM-based 3D printer, which enables the creation of patient-specific craniofacial implant at a lower cost to serve low-income patients.

    Matched MeSH terms: Prosthesis Design/methods*
  17. Tiew EC, Azis N, Teh LA, Shukor S, Goo CL
    Oper Dent, 2024 Jul 01;49(4):403-411.
    PMID: 38978316 DOI: 10.2341/23-063-L
    BACKGROUND: Marginal adaptation and retention of endocrowns are crucial for the success and survival of endocrowns. This study aimed to investigate the effect of different materials and intracoronal depth on the retention and marginal adaptation of CAD/CAM fabricated all-ceramic endocrowns.

    METHODS: Thirty-six mandibular premolar teeth with an average surface area of 64.49 mm2 were prepared to receive CAM/CAM fabricated endocrowns. Samples were divided randomly and equally into groups of lithium disilicate with 2 mm intracoronal depth (LD2), lithium disilicate with 4 mm intracoronal depth (LD4), polymer infiltrated ceramic network with 2 mm intracoronal depth (PICN2) and polymer infiltrated ceramic network with 4 mm intracoronal depth (PICN4). All endocrowns were cemented using ParaCore resin cement with 14N pressure and cured for 20 seconds. Fifty measurements of absolute marginal discrepancy (AMD) were done using a stereomicroscope after cementation. After 24 hours, all samples were subjected to thermocycling before the retention test. This involved using a universal testing machine with a crosshead speed of 0.5 mm/min and applying a load of 500N. The maximum force to detach the crown was recorded in newtons and the mode of failure was identified.

    RESULTS: Two-way ANOVA revealed that the AMD for PICN was statistically significantly better than lithium disilicate (p=0.01). No statistically significant difference was detected in the AMD between the two intracoronal depths (p=0.72). PICN and endocrowns with 4 mm intracoronal depth had statistically significant better retention (p<0.05). 72.22% of the sample suffered from cohesive failures and 10 LD endocrowns suffered adhesive failures.

    CONCLUSIONS: Within the limitations of this study, we found that different materials and intracoronal depths can indeed influence the retention of CAD/CAM fabricated endocrowns. Based on the controlled setting findings, PICN was found to have better retention and better marginal adaptation than similar lithium disilicate premolar endocrowns.

    Matched MeSH terms: Dental Prosthesis Design/methods
  18. Gholizadeh H, Abu Osman NA, Kamyab M, Eshraghi A, Lúvíksdóttir AG, Wan Abas WA
    Am J Phys Med Rehabil, 2012 Oct;91(10):894-8.
    PMID: 22173083
    The effects of Seal-In X5 and Dermo liner (Össur) on suspension and patient's comfort in lower limb amputees are unclear. In this report, we consider the case of a 51-yr-old woman with bilateral transtibial amputation whose lower limbs were amputated because of peripheral vascular disease. The subject had bony and painful residual limbs, especially at the distal ends. Two prostheses that used Seal-In X5 liners and a pair of prostheses with Dermo liners were fabricated, and the subject wore each for a period of 2 wks. Once the 2 wks had passed, the pistoning within the socket was assessed and the patient was questioned as to her satisfaction with both liners. This study revealed that Seal-In X5 liner decreased the residual limb pain experienced by the patient and that 1-2 mm less pistoning occurred within the socket compared with the Dermo liner. However, the patient needed to put in extra effort for donning and doffing the prosthesis. Despite this, it is clear that the Seal-In X5 liner offers a viable alternative for individuals with transtibial amputations who do not have enough soft tissue around the bone, especially at the end of the residual limb.
    Matched MeSH terms: Prosthesis Design/methods
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links