Displaying all 14 publications

Abstract:
Sort:
  1. Ibrahim NA, Suliadi S
    Comput Methods Programs Biomed, 2011 Dec;104(3):e122-32.
    PMID: 21764167 DOI: 10.1016/j.cmpb.2011.06.003
    Correlated ordinal data are common in many areas of research. The data may arise from longitudinal studies in biology, medical, or clinical fields. The prominent characteristic of these data is that the within-subject observations are correlated, whilst between-subject observations are independent. Many methods have been proposed to analyze correlated ordinal data. One way to evaluate the performance of a proposed model or the performance of small or moderate size data sets is through simulation studies. It is thus important to provide a tool for generating correlated ordinal data to be used in simulation studies. In this paper, we describe a macro program on how to generate correlated ordinal data based on R language and SAS IML.
    Matched MeSH terms: Programming Languages*
  2. Daoud HA, Md Sabri AQ, Loo CK, Mansoor AM
    PLoS One, 2018;13(4):e0195878.
    PMID: 29702697 DOI: 10.1371/journal.pone.0195878
    This paper presents the concept of Simultaneous Localization and Multi-Mapping (SLAMM). It is a system that ensures continuous mapping and information preservation despite failures in tracking due to corrupted frames or sensor's malfunction; making it suitable for real-world applications. It works with single or multiple robots. In a single robot scenario the algorithm generates a new map at the time of tracking failure, and later it merges maps at the event of loop closure. Similarly, maps generated from multiple robots are merged without prior knowledge of their relative poses; which makes this algorithm flexible. The system works in real time at frame-rate speed. The proposed approach was tested on the KITTI and TUM RGB-D public datasets and it showed superior results compared to the state-of-the-arts in calibrated visual monocular keyframe-based SLAM. The mean tracking time is around 22 milliseconds. The initialization is twice as fast as it is in ORB-SLAM, and the retrieved map can reach up to 90 percent more in terms of information preservation depending on tracking loss and loop closure events. For the benefit of the community, the source code along with a framework to be run with Bebop drone are made available at https://github.com/hdaoud/ORBSLAMM.
    Matched MeSH terms: Programming Languages
  3. CHUA KAH WAI, LOY KAK CHOON, RUWAIDIAH IDRIS
    MyJurnal
    Ordinary Differential Equations (ODEs) are usually used in numerous fields especially in solving the modelling problem. Numerical methods are one of the vital mathematical tools to solve the ODEs that appear in various modelling problems by determining the approximation solution close to the in exact solution if it exists. Runge-Kutta methods (RK) are the numerical methods used to integrate the ODEs by applying multistage methods at the midpoint of an interval which can efficiently produce a more accurate result or small magnitude of error. We proposed Runge-Kutta methods (RK) to solve the 1st_ order nonlinear stiff ODEs. The RK methods used in this research are known as the RK-2, RK-4, and RK-5 methods. We proved the existence and uniqueness of the ODEs before we solved it numerically. We also proved the absolute-stability of the RK methods to determine the overall stability of these methods. We found two suitable test cases which are the standard test problem and manufactured solution. We proved that by combining the adaptive step size with RK methods can result in more efficient computation. We implemented the 2nd_, 4th_ and 5th_ order of RK methods with step size adaptively algorithm to solve the test problem and manufactured solution via Octave programming language. The resulting numerical error and the stability of each method can be studied. We compared our results using several error plots versus the Central Processing Unit (CPU) time required to compute a given nonlinear 1st_ order stiff ODE problem. In a conclusion, RK methods which combine with the adaptive step size can result in more efficient computation and accuracy compare with the fixed step size RK methods.
    Matched MeSH terms: Programming Languages
  4. Alias N, Saipol HF, Ghani AC
    J Food Sci Technol, 2014 Dec;51(12):3647-57.
    PMID: 25477631 DOI: 10.1007/s13197-012-0913-7
    A chronology of mathematical models for heat and mass transfer equation is proposed for the prediction of moisture and temperature behavior during drying using DIC (Détente Instantanée Contrôlée) or instant controlled pressure drop technique. DIC technique has the potential as most commonly used dehydration method for high impact food value including the nutrition maintenance and the best possible quality for food storage. The model is governed by the regression model, followed by 2D Fick's and Fourier's parabolic equation and 2D elliptic-parabolic equation in a rectangular slice. The models neglect the effect of shrinkage and radiation effects. The simulations of heat and mass transfer equations with parabolic and elliptic-parabolic types through some numerical methods based on finite difference method (FDM) have been illustrated. Intel®Core™2Duo processors with Linux operating system and C programming language have been considered as a computational platform for the simulation. Qualitative and quantitative differences between DIC technique and the conventional drying methods have been shown as a comparative.
    Matched MeSH terms: Programming Languages
  5. Mat Kiah ML, Al-Bakri SH, Zaidan AA, Zaidan BB, Hussain M
    J Med Syst, 2014 Oct;38(10):133.
    PMID: 25199651 DOI: 10.1007/s10916-014-0133-y
    One of the applications of modern technology in telemedicine is video conferencing. An alternative to traveling to attend a conference or meeting, video conferencing is becoming increasingly popular among hospitals. By using this technology, doctors can help patients who are unable to physically visit hospitals. Video conferencing particularly benefits patients from rural areas, where good doctors are not always available. Telemedicine has proven to be a blessing to patients who have no access to the best treatment. A telemedicine system consists of customized hardware and software at two locations, namely, at the patient's and the doctor's end. In such cases, the video streams of the conferencing parties may contain highly sensitive information. Thus, real-time data security is one of the most important requirements when designing video conferencing systems. This study proposes a secure framework for video conferencing systems and a complete management solution for secure video conferencing groups. Java Media Framework Application Programming Interface classes are used to design and test the proposed secure framework. Real-time Transport Protocol over User Datagram Protocol is used to transmit the encrypted audio and video streams, and RSA and AES algorithms are used to provide the required security services. Results show that the encryption algorithm insignificantly increases the video conferencing computation time.
    Matched MeSH terms: Programming Languages
  6. Rosiah Osman, Abd. Rahman Ramli, Wan Azizun Wan Adnan, Intan Helina Hasan
    MyJurnal
    The management of a chemical inventory is necessary for safety purposes as well as for fulfilling regulatory compliance. In most academic laboratories, the management of chemicals is still being done manually, which is time-consuming. As a result, data are not updated and expired chemicals are unintentionally used. This research proposes that UHF Class 1 Gen 2 Radio Frequency Identification (RFID) technology be used in the development of a chemical inventory information system to ease chemical tracking as well as to shorten the inventory process time. An information system integrating RFID data and a web-based rule identification interface was developed. WAMP 2.2.17, PHP 5.3.5 and MySQL 5.5.8 were downloaded and a programming language was written to check the expiration date of the chemicals as well as to produce alert notification status. Wireless technology through GSM modem helped in producing alert messages using the Short Message System (SMS) of the nearly expired chemicals to the handphone of the person in charge in real time.
    Matched MeSH terms: Programming Languages
  7. Babalola Sunday Oyetayo, Abdul Rahman Alias, Tan, Liat Choon, Abidoye Ayodeji Iyanu, Anthony Olatunbosun
    MyJurnal
    The new innovative of technology by (GIS) Geographic Information System, (LIS) Land
    Information System and (CIS) Cadastral Information System has been playing a leading
    role in the development of cadastral and land administration in this study area. The
    Customary ways and approach to the land titling and registration in the time past has
    resulted in the delay in the processes of obtaining title to the land. Land administration
    system in Nigeria includes the processes of land registration, cadastral mapping, land
    valuation and land inventory. Most of developing nation particularly Nigeria is faced
    with the problem of poor land administration and management. Technology is
    paramount in acquiring a proper technological development in land administration.
    This study tried to encourage land title registration by providing web technologies that
    are faster and suitable with a low rate and minimum delay. The need to develop a
    dynamic web for the processes in the land registration arises from the dynamic
    relationship to the land of the people. The delay in time and process of land registration
    couple with the exploitation in land related activities has called for the urgent
    intervention of all the stakeholders in land administration. PHP programming language
    was used as a server side scripting languages together with MyAdmin SQL, a website
    was developed for the processes involved in the land registration having examined the
    fastest way to solve the problem. A robust dynamic database that is reliable and easy
    to use was also developed which is capable of accommodating several numbers of
    applicants. The applicants, monitoring agency and the government have the advantage
    of checking all the processes on line without any contact with the officers working on
    the certificate.
    Matched MeSH terms: Programming Languages
  8. Aburas MM, Ahamad MSS, Omar NQ
    Environ Monit Assess, 2019 Mar 05;191(4):205.
    PMID: 30834982 DOI: 10.1007/s10661-019-7330-6
    Spatio-temporal land-use change modeling, simulation, and prediction have become one of the critical issues in the last three decades due to uncertainty, structure, flexibility, accuracy, the ability for improvement, and the capability for integration of available models. Therefore, many types of models such as dynamic, statistical, and machine learning (ML) models have been used in the geographic information system (GIS) environment to fulfill the high-performance requirements of land-use modeling. This paper provides a literature review on models for modeling, simulating, and predicting land-use change to determine the best approach that can realistically simulate land-use changes. Therefore, the general characteristics of conventional and ML models for land-use change are described, and the different techniques used in the design of these models are classified. The strengths and weaknesses of the various dynamic, statistical, and ML models are determined according to the analysis and discussion of the characteristics of these models. The results of the review confirm that ML models are the most powerful models for simulating land-use change because they can include all driving forces of land-use change in the simulation process and simulate linear and non-linear phenomena, which dynamic models and statistical models are unable to do. However, ML models also have limitations. For instance, some ML models are complex, the simulation rules cannot be changed, and it is difficult to understand how ML models work in a system. However, this can be solved via the use of programming languages such as Python, which in turn improve the simulation capabilities of the ML models.
    Matched MeSH terms: Programming Languages
  9. Esmaeilpour M, Naderifar V, Shukur Z
    PLoS One, 2014;9(9):e106313.
    PMID: 25243670 DOI: 10.1371/journal.pone.0106313
    Over the last decade, design patterns have been used extensively to generate reusable solutions to frequently encountered problems in software engineering and object oriented programming. A design pattern is a repeatable software design solution that provides a template for solving various instances of a general problem.
    Matched MeSH terms: Programming Languages
  10. Manickam S, Abidi SS
    Stud Health Technol Inform, 2001;84(Pt 1):643-7.
    PMID: 11604816
    Development and usage of Case Based Reasoning (CBR) driven medical diagnostic system requires a large volume of clinical cases that depict the problem-solving methodology of medical experts. Successful usage of CBR based systems in healthcare is constrained by the need for a continuous supply of current and correct clinical cases (in an electronic medium) from medical experts. To address this constraint we present a strategy to pro-actively transform generic Electronic Patient Records (EPR) to Operable CBR-oriented Cases (OCC) that are compliant to specialised CBR-based medical systems. EPR-OCC transformation methodology is based on XML parse-trees, Unified Medical Language Source (UMLS) meta-thesauri and medical knowledge ontologies. The featured work involves the implementation of a Java-based computer system for the automatic transformation of XML-based EPR-originating from heterogeneous EPR repositories accessible over the Internet/WWW-to specialised OCC that can then be seamlessly incorporated within Intelligent CBR-based Medical Diagnostic Systems.
    Matched MeSH terms: Programming Languages
  11. Wah, Yap Bee, Nurain Ibrahim, Hamzah Abdul Hamid, Shuzlina Abdul-Rahman, Fong, Simon
    MyJurnal
    Feature selection has been widely applied in many areas such as classification of spam emails, cancer cells, fraudulent claims, credit risk, text categorisation and DNA microarray analysis. Classification involves building predictive models to predict the target variable based on several input variables (features). This study compares filter and wrapper feature selection methods to maximise the classifier accuracy. The logistic regression was used as a classifier while the performance of the feature selection methods was based on the classification accuracy, Akaike information criteria (AIC), Bayesian information criteria (BIC), Area Under Receiver operator curve (AUC), as well as sensitivity and specificity of the classifier. The simulation study involves generating data for continuous features and one binary dependent variable for different sample sizes. The filter methods used are correlation based feature selection and information gain, while the wrapper methods are sequential forward and sequential backward elimination. The simulation was carried out using R, an open-source programming language. Simulation results showed that the wrapper method (sequential forward selection and sequential backward elimination) methods were better than the filter method in selecting the correct features.
    Matched MeSH terms: Programming Languages
  12. Mamat M, Samad SA, Hannan MA
    Sensors (Basel), 2011;11(6):6435-53.
    PMID: 22163964 DOI: 10.3390/s110606435
    This paper reports the design of an electronic nose (E-nose) prototype for reliable measurement and correct classification of beverages. The prototype was developed and fabricated in the laboratory using commercially available metal oxide gas sensors and a temperature sensor. The repeatability, reproducibility and discriminative ability of the developed E-nose prototype were tested on odors emanating from different beverages such as blackcurrant juice, mango juice and orange juice, respectively. Repeated measurements of three beverages showed very high correlation (r > 0.97) between the same beverages to verify the repeatability. The prototype also produced highly correlated patterns (r > 0.97) in the measurement of beverages using different sensor batches to verify its reproducibility. The E-nose prototype also possessed good discriminative ability whereby it was able to produce different patterns for different beverages, different milk heat treatments (ultra high temperature, pasteurization) and fresh and spoiled milks. The discriminative ability of the E-nose was evaluated using Principal Component Analysis and a Multi Layer Perception Neural Network, with both methods showing good classification results.
    Matched MeSH terms: Programming Languages
  13. Kamarudin ND, Ooi CY, Kawanabe T, Odaguchi H, Kobayashi F
    J Healthc Eng, 2017;2017:7460168.
    PMID: 29065640 DOI: 10.1155/2017/7460168
    In tongue diagnosis, colour information of tongue body has kept valuable information regarding the state of disease and its correlation with the internal organs. Qualitatively, practitioners may have difficulty in their judgement due to the instable lighting condition and naked eye's ability to capture the exact colour distribution on the tongue especially the tongue with multicolour substance. To overcome this ambiguity, this paper presents a two-stage tongue's multicolour classification based on a support vector machine (SVM) whose support vectors are reduced by our proposed k-means clustering identifiers and red colour range for precise tongue colour diagnosis. In the first stage, k-means clustering is used to cluster a tongue image into four clusters of image background (black), deep red region, red/light red region, and transitional region. In the second-stage classification, red/light red tongue images are further classified into red tongue or light red tongue based on the red colour range derived in our work. Overall, true rate classification accuracy of the proposed two-stage classification to diagnose red, light red, and deep red tongue colours is 94%. The number of support vectors in SVM is improved by 41.2%, and the execution time for one image is recorded as 48 seconds.
    Matched MeSH terms: Programming Languages
  14. Pahl C, Zare M, Nilashi M, de Faria Borges MA, Weingaertner D, Detschew V, et al.
    J Biomed Inform, 2015 Jun;55:174-87.
    PMID: 25900270 DOI: 10.1016/j.jbi.2015.04.004
    This work investigates, whether openEHR with its reference model, archetypes and templates is suitable for the digital representation of demographic as well as clinical data. Moreover, it elaborates openEHR as a tool for modelling Hospital Information Systems on a regional level based on a national logical infrastructure. OpenEHR is a dual model approach developed for the modelling of Hospital Information Systems enabling semantic interoperability. A holistic solution to this represents the use of dual model based Electronic Healthcare Record systems. Modelling data in the field of obstetrics is a challenge, since different regions demand locally specific information for the process of treatment. Smaller health units in developing countries like Brazil or Malaysia, which until recently handled automatable processes like the storage of sensitive patient data in paper form, start organizational reconstruction processes. This archetype proof-of-concept investigation has tried out some elements of the openEHR methodology in cooperation with a health unit in Colombo, Brazil. Two legal forms provided by the Brazilian Ministry of Health have been analyzed and classified into demographic and clinical data. LinkEHR-Ed editor was used to read, edit and create archetypes. Results show that 33 clinical and demographic concepts, which are necessary to cover data demanded by the Unified National Health System, were identified. Out of the concepts 61% were reused and 39% modified to cover domain requirements. The detailed process of reuse, modification and creation of archetypes is shown. We conclude that, although a major part of demographic and clinical patient data were already represented by existing archetypes, a significant part required major modifications. In this study openEHR proved to be a highly suitable tool in the modelling of complex health data. In combination with LinkEHR-Ed software it offers user-friendly and highly applicable tools, although the complexity built by the vast specifications requires expert networks to define generally excepted clinical models. Finally, this project has pointed out main benefits enclosing high coverage of obstetrics data on the Clinical Knowledge Manager, simple modelling, and wide network and support using openEHR. Moreover, barriers described are enclosing the allocation of clinical content to respective archetypes, as well as stagnant adaption of changes on the Clinical Knowledge Manager leading to redundant efforts in data contribution that need to be addressed in future works.
    Matched MeSH terms: Programming Languages
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links