METHODS: This was a prospective cross-sectional study of pregnant and postnatal women aged between 18-35 years with no coexisting diseases. Serum samples were analysed for hs-TnI.
RESULTS: A total of 880 women (mean age = 29.1 years [standard deviation = 5.1 years]) were recruited with 129 (14%), 207 (24%), and 416 (47%) patients in the first, second, and third trimesters, respectively. Ninety (10%) participants were recruited in the postnatal period. During pregnancy 28 (3%) patients were classified as having pregnancy-induced hypertension and 10 (1%) as preeclampsia. High-sensitivity cardiac troponin I was measurable in 546 (62%) participants with a median of 1 ng/L (range 0 to 783 ng/L). Troponin concentrations were above the 99th percentile in 19 (2%) individuals. Patients with pregnancy-induced hypertension and preeclampsia had higher concentrations of hs-TnI (median 11 ng/L [interquartile range (IQR) 6 to 22 ng/L] vs 12ng/L [IQR 3 to 98 ng/L] vs 1 ng/L [IQR 0 to 1 ng/L]). In logistic regression modeling hs-cTnI concentration remained an independent predictor of pregnancy-induced hypertension or preeclampsia in both unadjusted and adjusted models (odds ratio 9.3 [95% confidence interval 5.8 to 16.3] and 11.5 [95% confidence interval 6.3 to 24.1], respectively, per doubling of hs-TnI concentrations).
CONCLUSIONS: Cardiac troponin measured using a high-sensitivity assay is quantifiable in the majority of young pregnant women with 2% of individuals having concentration above the 99th percentile sex-specific threshold. Patients with pregnancy-induced hypertension or preeclampsia had higher cardiac troponin concentrations. Cardiac troponin was a strong independent predictor of pregnancy-induced hypertension or preeclampsia in pregnant and postnatal women.
METHODS: Mononuclear cells (MNC) were isolated from UCB and further enriched for CD34+ cells using immune-magnetic method followed by CFU assay. A panel of HSC markers including differentiated haematopoietic markers were used to confirm the differentiation ability of UCB-HSC by flow cytometry analysis.
RESULTS/ DISCUSSION: The HSC progenitor's colonies from the preeclampsia group were significantly lower compared to the control. This correlates with the low UCB volume, TNC and CD34+ cells count. In addition, the UCB-enriched CD34+ population were lymphoid progenitors and capable to differentiate into natural killer cells and T-lymphocytes.
CONCLUSION: These findings should be taken into consideration when selecting UCB from preeclamptic mothers for banking and predicting successful treatment related to UCB transplant.