Displaying all 4 publications

Abstract:
Sort:
  1. Khyasudeen MF, Nowakowski PJ, Tan HS
    J Phys Chem B, 2019 02 14;123(6):1359-1364.
    PMID: 30657672 DOI: 10.1021/acs.jpcb.9b00099
    We use two-dimensional electronic spectroscopy to measure the ultrafast correlation dynamics between the Q x and Q y transitions in chlorophyll molecules. We derive a variation to the center line slope method to quantify the frequency fluctuation cross-correlation function, C xy( Tw). Compared with the frequency fluctuation correlation function of the Q y transition, we observe that there is only a minimal correlation between the Q x and Q y transition, even at the ultrashort timescale of ∼100 fs, which then decays to zero in a time scale of ∼2 ps.
    Matched MeSH terms: Porphyrins/chemistry*
  2. Alipour E, Alimohammady F, Yumashev A, Maseleno A
    J Mol Model, 2019 Dec 13;26(1):7.
    PMID: 31834504 DOI: 10.1007/s00894-019-4267-1
    Today, drug delivery systems based on nanostructures have become the most efficient to be studied. Recent studies revealed that the fullerenes can be used as drug carriers and transport drugs in a target cell. The aim of the present work is to study the interaction of C60 fullerene containing porphyrin-like transition metal-N4 clusters (TMN4C55, TM = Fe, Co, and Ni) with a non-steroidal anti-inflammatory drug (ibuprofen (Ibp)) by employing the method of the density functional theory. Results showed that the C60 fullerene with TMN4 clusters could significantly enhance the tendency of C60 for adsorption of ibuprofen drug. Also, our ultraviolet-visible results show that the electronic spectra of Ibp/TMN4C55 complexes exhibit a blue shift toward lower wavelengths (higher energies). It was found that the NiN4C55 fullerene had high chemical reactivity, which was important for binding of the drug onto the carrier surface. In order to gain insight into the binding features of Ibp/TMN4C55 complexes, the atoms in molecules analysis was also performed. Our results exhibit the electrostatic features of the Ibp/TMN4C55 bonding. Consequently, this study demonstrated that the TMN4C55 fullerenes could be used as potential carriers for delivery of Ibp drug in the nanomedicine domain. Graphical Abstract The TMN4C55 (TM=Fe, Co, and Ni) fullerenes could be used as potential carriers for delivery of ibuprofen drug in the nanomedicine domain.
    Matched MeSH terms: Porphyrins/chemistry*
  3. Kamarulzaman EE, Gazzali AM, Acherar S, Frochot C, Barberi-Heyob M, Boura C, et al.
    Int J Mol Sci, 2015 Oct 12;16(10):24059-80.
    PMID: 26473840 DOI: 10.3390/ijms161024059
    Photodynamic therapy (PDT) is a cancer treatment modality that requires three components, namely light, dioxygen and a photosensitizing agent. After light excitation, the photosensitizer (PS) in its excited state transfers its energy to oxygen, which leads to photooxidation reactions. In order to improve the selectivity of the treatment, research has focused on the design of PS covalently attached to a tumor-targeting moiety. In this paper, we describe the synthesis and the physico-chemical and photophysical properties of six new peptide-conjugated photosensitizers designed for targeting the neuropilin-1 (NRP-1) receptor. We chose a TPC (5-(4-carboxyphenyl)-10,15, 20-triphenyl chlorine as photosensitizer, coupled via three different spacers (aminohexanoic acid, 1-amino-3,6-dioxaoctanoic acid, and 1-amino-9-aza-3,6,12,15-tetraoxa-10-on-heptadecanoic acid) to two different peptides (DKPPR and TKPRR). The affinity towards the NRP-1 receptor of the conjugated chlorins was evaluated along with in vitro and in vivo stability levels. The tissue concentration of the TPC-conjugates in animal model shows good distribution, especially for the DKPPR conjugates. The novel peptide-PS conjugates proposed in this study were proven to have potential to be further developed as future NRP-1 targeting photodynamic therapy agent.
    Matched MeSH terms: Porphyrins/chemistry
  4. Lim SH, Yam ML, Lam ML, Kamarulzaman FA, Samat N, Kiew LV, et al.
    Mol Pharm, 2014 Sep 2;11(9):3164-73.
    PMID: 25077598 DOI: 10.1021/mp500351s
    This study aims to improve the photodynamic properties and biological effectiveness of 15(1)-hydroxypurpurin-7-lactone dimethyl ester (G2), a semisynthetic photosensitizer, for the PDT treatment of cancer. The strategy we undertook was by conjugating G2 with aspartic acid and lysine amino acid moieties. The photophysical properties, singlet oxygen generation, distribution coefficiency (Log D in octanol/PBS pH 7.4), and photostability of these analogues and their in vitro bioactivities such as cellular uptake, intracellular localization, and photoinduced cytotoxicity were evaluated. In addition, selected analogues were also investigated for their PDT-induced vasculature occlusion in the chick chorioallantoic membrane model and for their antitumor efficacies in Balb/C mice bearing 4T1 mouse mammary tumor. From the study, conjugation with aspartic acid improved the aqueous solubility of G2 without affecting its photophysical characteristics. G2-Asp showed similar in vitro and in vivo antitumor efficacies compared to the parent compound. Given the hydrophilic nature of G2-Asp, the photosensitizer is a pharmaceutically advantageous candidate as it can be formulated easily for systemic administration and has reduced risk of aggregation in vascular system.
    Matched MeSH terms: Porphyrins/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links