AIM OF THE REVIEW: The present review aims to compile an up-to-date review of the progress made in the continuous pharmacological and phytochemistry investigation of K. africana and the corresponding commercial and pharmaceutical application of these findings with the ultimate objective of providing a guide for future research on this plant.
METHOD: The scholarly information needed for this paper were predominantly sourced from the electronic search engines such as Google, Google scholar; publishing sites such as Elsevier, scienceDirect, BMC, PubMed; other scientific database sites for chemicals such as ChemSpider, PubChem, and also from online books.
RESULTS: Pharmacological investigations conducted confirm the anti-inflammatory, analgesic, antioxidant and anticancer activity of the extract of different parts of the plant. Bioactive constituents are found to be present in all parts of the plant. So far, approximately 150 compounds have been characterized from different part of the plant. Iridoids, naphthoquinones, flavonoids, terpenes and phenylethanoglycosides are the major class of compounds isolated. Novel compounds with potent antioxidant, antimicrobial and anticancer effect such as verbascoside, verminoside and pinnatal among others, have been identified. Commercial trade of K. africana has boosted in the las few decades. Its effect in the maintenance of skin has been recognized resulting in a handful of skin formulations in the market.
CONCLUSIONS: The pharmaceutical potentials of K. africana has been recognized and have witness a surge in research interest. However, till date, many of its traditional medicinal uses has not been investigated scientifically. Further probing of the existential researches on its pharmacological activity is recommended with the end-goal of unravelling the pharmacodynamics, pharmacokinetics, clinical relevance and possible toxicity and side effects of both the extract and the active ingredients isolated.
AIM OF THE STUDY: This study aimed to investigate the bioactivity and phytochemistry of Morus alba ethanolic leaf extract from Brunei Darussalam and its subacute toxic effects in the Institute of Cancer Research (ICR) female mice.
MATERIALS AND METHODS: The phenolic yield and antioxidant of the extract were analysed. Meanwhile, liquid chromatography-mass spectrometry and high-performance liquid chromatography were utilised to determine the phenolic compound of the MLE. In the subacute toxicity study, twenty-five female mice were randomly divided into five groups: the control group, which received oral gavage of 5% dimethyl sulfoxide solvent (DMSO), and the MLE treatment group, which received the extract at a dose of 125, 250, 500 and 1000 mg/kg. Physiology, haematology, biochemistry, and histology were evaluated during the study.
RESULTS: Morus alba leaf depicted total phenolic 10.93 mg gallic acid equivalents (GAE)/g dry weight (DW), flavonoid 256.67 mg quercetin equivalents (QE)/g DW, and antioxidant bioactivity content of 602.03 IC50 μg/mL and 13.21 mg Fe2+/g DW. Twenty compounds in the Morus alba ethanolic leaf extract were identified, with chlorogenic acid (305.60 mg/100 g DW) as the primary compound. As for subacute toxicity in this study, neither mortality nor haematological changes were observed. On the other hand, administration of 500 and 1000 mg/kg MLE resulted in mild hepatocellular injury, as indicated by a significant (p
AIM OF THE STUDY: A more comprehensive and in-depth review about the geographical distribution, traditional uses, chemical constituents and pharmacological activities as well as safe and toxicity of Gynura species has been summarized, hoping to provide a scientific basis for rational development and utilization as well as to foster further research of these important medicinal plant resources in the future.
MATERIALS AND METHODS: A review of the literature was performed based on the existing peer-reviewed researches by consulting scientific databases including Web of Science, PubMed, Elsevier, Google Scholar, SciFinder and China National Knowledge Infrastructure.
RESULTS: Many of the Gynura species have been phytochemically studied, which led to the isolation of more than 338 compounds including phenolics, flavonoids, alkaloids, terpenoids, steroids, cerebrosides, aliphatics and other compounds. Pharmacological studies in vitro and in vivo have also confirmed the various bioactive potentials of extracts or pure compounds from many Gynura plants, based on their claimed ethnomedicinal and anecdotal uses, including antioxidant, anti-inflammation, anticancer, antidiabetic, antihypertension, antibacterial and other activities. However, pyrrolizidine alkaloids (PAs) pose a threat to the medication safety and edible security of Gynura plants because of toxicity issues, requiring the need to pay great attention to this phenomenon.
CONCLUSION: The traditional uses, phytochemistry and pharmacology of Gynura species described in this review demonstrated that these plants contain a great number of active constituents and display a diversity of pharmacological activities. However, the mechanism of action, structure-activity relationship, potential synergistic effects and pharmacokinetics of these components need to be further elucidated. Moreover, further detailed research is urgently needed to explain the mechanisms of toxicity induced by PAs. In this respect, effective detoxification strategies need to be worked out, so as to support the safe and reasonable utilization of Gynura plant resources in the future.