Displaying all 17 publications

Abstract:
Sort:
  1. Farhana K, Effendi I, Caszo B, Satar NA, Singh HJ
    J Physiol Biochem, 2014 Jun;70(2):417-23.
    PMID: 24711061 DOI: 10.1007/s13105-014-0319-2
    Although leptin has been shown to increase blood pressure (BP), it is however unclear if this increase can be prevented by exercise. This study therefore investigated the effect of leptin treatment with concurrent exercise on blood pressure (BP), sodium output, and endothelin-1 (ET-1) levels in normotensive rats. Male Sprague-Dawley rats weighing 250-270 g were divided into four groups consisting of a control group (n = 6), leptin-treated (n = 8), non-leptin-treated exercise group (n = 8), and a leptin-treated exercise group (n = 8). Leptin was given subcutaneously daily for 14 days (60 μg/kg/day). Animals were exercised on a treadmill for 30 min at a speed of 0.5 m/s and at 5° incline four times per week. Measurement of systolic blood pressure (SBP) and collection of urine samples for estimation of sodium and creatinine was done once a week. Serum samples were collected at the end of the experiment for determination of sodium, creatinine and ET-1. At day 14, mean SBP and serum ET-1 level in the leptin-treated group was significantly higher than that in the control group whereas mean SBP and serum ET-1 level was significantly lower in the leptin-treated exercise group than those in leptin-treated and control groups. Creatinine clearance, urinary sodium excretion, and urine output were not different between the four groups. Regular treadmill exercise prevents leptin-induced increases in SBP in rats, which might in part result from increased urinary sodium excretion and preventing the leptin-induced increases in serum ET-1 concentration.
    Matched MeSH terms: Physical Conditioning, Animal*
  2. Darlis, Abdullah N, Liang JB, Purwanto B, Ho YW
    PMID: 11691611
    Heat production (HP) of male and female mouse deer during eating, standing and sitting was determined using the open circuit respiration chamber (RC). The time taken for similar activities was also determined in an outdoor enclosure (OD). The animals were fed kangkong (Ipomoea aquatica), sweet potato (Ipomoea batatas) and rabbit pellet ad libitum. Male mouse deer consumed more dry matter (DM), organic matter (OM) and gross energy (GE) than female. The time for each activity of male and female mouse deer kept in RC and OD was similar. The average time spent in RC and OD for both male and female, respectively, for sitting (956 and 896 min/day) was significantly (P<0.01) longer than standing (463 and 520 min/day) and eating (21 and 24 min/day). Heat production for male and female mouse deer, respectively, during eating was the highest (0.44 and 0.43 kJ/kg W(0.75)/min) followed by standing (0.37 and 0.33 kJ/kgW(0.75)/min) and sitting (0.26 and 0.26 kJ/kg W(0.75)/min). The difference in HP per min during standing between male and female was significant (P<0.05). The HP for 08.00-14.00 h and 14.00-20.00 h periods were higher than 20.00-02.00 h and 02.00-08.00 h periods. The overall HP for males during 08.00-14.00 h and 14.00-20.00 h periods were significantly (P<0.05) higher (114.8 and 119.2 kJ/kg W(0.75)) than female (107.5 and 110.4 kJ/kg W(0.75)), respectively.
    Matched MeSH terms: Physical Conditioning, Animal*
  3. Hong YH, Betik AC, McConell GK
    Exp Physiol, 2014 Dec 1;99(12):1569-73.
    PMID: 25192731 DOI: 10.1113/expphysiol.2014.079202
    Nitric oxide is produced within skeletal muscle fibres and has various functions in skeletal muscle. There is evidence that NO may be essential for normal increases in skeletal muscle glucose uptake during contraction/exercise. Although there have been some discrepant results, it has been consistently demonstrated that inhibition of NO synthase (NOS) attenuates the increase in skeletal muscle glucose uptake during contraction in mouse and rat muscle ex vivo, during in situ contraction in rats and during exercise in humans. The NO-mediated increase in skeletal muscle glucose uptake during contraction/exercise is probably due to the modulation of intramuscular signalling that ultimately increases glucose transporter 4 (GLUT4) translocation and is, surprisingly, independent of blood flow. In this review, we discuss the evidence for and against a role of NO in regulating skeletal muscle glucose uptake during contraction/exercise and outline the possible mechanism(s) involved. Emerging findings regarding the role of neuronal NOS mu (nNOSμ) in this process are also discussed.
    Matched MeSH terms: Physical Conditioning, Animal/physiology*
  4. Ooi FK, Singh R, Singh HJ, Umemura Y, Nagasawa S
    J Physiol Sci, 2011 Nov;61(6):487-95.
    PMID: 21870136 DOI: 10.1007/s12576-011-0169-4
    The effects of deconditioning on exercise-induced bone gains in rats were investigated in 12-week-old female WKY rats performing a standard jumping exercise regimen for either 8, 12 or 24 weeks, followed by sedentary periods of either 24, 12 or 0 weeks, respectively. Age-matched controls received no exercise over the same period. At the end of the training/sedentary period, the tibiae were harvested for analyses of bone parameters. Gains in tibial fat-free dry weight decayed within 12 weeks of deconditioning, but gains in tibial ultimate bending force (strength), maximum diameter and cortical area were still present at 12 weeks of deconditioning. With the exception of cortical area, all other exercise-induced bone gains decayed by the 24th week of deconditioning. It appears that the decay in exercise-induced bone gains in strength, physical and morphological properties is not uniform, and that gains in fat-free dry weight seem to decay earlier.
    Matched MeSH terms: Physical Conditioning, Animal/methods
  5. Ooi FK, Singh R, Singh HJ, Umemura Y
    Osteoporos Int, 2009 Jun;20(6):963-72.
    PMID: 18839049 DOI: 10.1007/s00198-008-0760-6
    SUMMARY: This study determines the minimum level of exercise required to maintain 8 weeks of jumping exercise-induced bone gains in rats. It was found that the minimum level of exercise required for maintaining the different exercise-induced bone gains varied between 11% and 18% of the initial exercise intensity.

    INTRODUCTION: This study ascertains the minimum level of follow-up exercise required to maintain bone gains induced by an 8-week jumping exercise in rats.

    METHODS: Twelve groups of 12-week old rats (n = 10 rats per group) were given either no exercise for 8 (8S) or 32 weeks (32S), or received 8 weeks of standard training program (8STP) that consisted of 200 jumps per week, given at 40 jumps per day for 5 days per week, followed by 24 weeks of exercise at loads of either 40 or 20 or 10 jumps per day, for either 5, or 3, or 1 day/week. Bone mass, strength, and morphometric properties were measured in the right tibia. Data were analyzed using one-way analyses of variance.

    RESULTS: Bone mass, strength, mid-shaft periosteal perimeter and cortical area were significantly (p < 0.05) higher in the rats given 8STP than that in the 8S group. The minimal level of exercise required to maintain the bone gains was 31, 36, 25, and 21 jumps per week for mass, strength, periosteal perimeter and cortical area, respectively.

    CONCLUSIONS: Eight weeks of jumping exercise-induced bone gains could be maintained for a period of 24 weeks with follow-up exercise consisting of 11% to 18% of the initial exercise load.

    Matched MeSH terms: Physical Conditioning, Animal/methods*
  6. Hong YH, Yang C, Betik AC, Lee-Young RS, McConell GK
    Am J Physiol Endocrinol Metab, 2016 05 15;310(10):E838-45.
    PMID: 27006199 DOI: 10.1152/ajpendo.00513.2015
    Nitric oxide influences intramuscular signaling that affects skeletal muscle glucose uptake during exercise. The role of the main NO-producing enzyme isoform activated during skeletal muscle contraction, neuronal nitric oxide synthase-μ (nNOSμ), in modulating glucose uptake has not been investigated in a physiological exercise model. In this study, conscious and unrestrained chronically catheterized nNOSμ(+/+) and nNOSμ(-/-) mice either remained at rest or ran on a treadmill at 17 m/min for 30 min. Both groups of mice demonstrated similar exercise capacity during a maximal exercise test to exhaustion (17.7 ± 0.6 vs. 15.9 ± 0.9 min for nNOSμ(+/+) and nNOSμ(-/-), respectively, P > 0.05). Resting and exercise blood glucose levels were comparable between the genotypes. Very low levels of NOS activity were detected in skeletal muscle from nNOSμ(-/-) mice, and exercise increased NOS activity only in nNOSμ(+/+) mice (4.4 ± 0.3 to 5.2 ± 0.4 pmol·mg(-1)·min(-1), P < 0.05). Exercise significantly increased glucose uptake in gastrocnemius muscle (5- to 7-fold) and, surprisingly, more so in nNOSμ(-/-) than in nNOSμ(+/+) mice (P < 0.05). This is in parallel with a greater increase in AMPK phosphorylation during exercise in nNOSμ(-/-) mice. In conclusion, nNOSμ is not essential for skeletal muscle glucose uptake during exercise, and the higher skeletal muscle glucose uptake during exercise in nNOSμ(-/-) mice may be due to compensatory increases in AMPK activation.
    Matched MeSH terms: Physical Conditioning, Animal*
  7. Shaw DJ, Rosanowski SM
    Vet J, 2019 Aug;250:24-27.
    PMID: 31383416 DOI: 10.1016/j.tvjl.2019.05.015
    Epiglottic entrapment is a condition in racing horses, associated with abnormal respiratory noises and exercise intolerance. Epiglottic entrapment has been linked to both poor and superior athletic performance, leading to concerns regarding whether surgery is indicated, and whether surgical correction may have a deleterious effect on future race performance. The objective of the current study was to assess the race-day performance of horses racing with epiglottic entrapment and the effect of surgical correction on performance outcomes using an intra-oral technique in anaesthetised horses. A case-control study was conducted at the Singapore Turf Club from 2008 to 2011. Controls were selected 1:1 to cases, based on Malaysian Racing Authority number. The performance of horses racing with epiglottic entrapment was recorded and post-surgery race performance was described. Further, post-surgery race performance was compared between cases and with non-case controls. Twenty horses raced with epiglottic entrapment were retrospectively enrolled. There was a significant difference in racing performance in case horses racing with and without epiglottic entrapment (P 
    Matched MeSH terms: Physical Conditioning, Animal/physiology*
  8. Tavafzadeh SS, Ooi FK, Chen CK, Sulaiman SA, Hung LK
    Biomed Res Int, 2015;2015:938782.
    PMID: 26176016 DOI: 10.1155/2015/938782
    This study investigated effects of cessation of exercise and honey supplementation on bone properties in young female rats. Eighty-four 12-week-old Sprague-Dawley female rats were divided into 7 groups: 16S, 16J, 16H, 16JH, 8J8S, 8H8S, and 8JH8S (8 = 8 weeks, 16 = 16 weeks, S = sedentary without honey supplementation, H = honey supplementation, and J = jumping exercise). Jumping exercise consisted of 40 jumps/day for 5 days/week. Honey was given to the rats at a dosage of 1 g/kg body weight/rat/day via force feeding for 7 days/week. Jumping exercise and honey supplementation were terminated for 8 weeks in 8J8S, 8H8S, and 8JH8S groups. After 8 weeks of cessation of exercise and honey supplementation, tibial energy, proximal total bone density, midshaft cortical moment of inertia, and cortical area were significantly higher in 8JH8S as compared to 16S. Continuous sixteen weeks of combined jumping and honey resulted in significant greater tibial maximum force, energy, proximal total bone density, proximal trabecular bone density, midshaft cortical bone density, cortical area, and midshaft cortical moment of inertia in 16JH as compared to 16S. These findings showed that the beneficial effects of 8 weeks of combined exercise and honey supplementation still can be observed after 8 weeks of the cessation and exercise and supplementation.
    Matched MeSH terms: Physical Conditioning, Animal/physiology*
  9. Mosavat M, Ooi FK, Mohamed M
    Biomed Res Int, 2014;2014:123640.
    PMID: 24672778 DOI: 10.1155/2014/123640
    This study was performed to determine the effects of 8-week honey supplementation combined with different jumping exercise intensities on serum cortisol, progesterone, estradiol, and reproductive organs. Eighty-four 9-week-old female rats were divided into 7 groups: baseline controls (C0), sedentary group (C), 20 and 80 jumps per day (Ex(20J), Ex(80J)), honey (H), and combined honey with 20 and 80 jumps per day (HEx(20J), HEx(80J)) groups. Jumping exercise was performed at 5 days/week and honey was given at a dosage of 1 g/kg body weight/day for 7 days/week. The level of serum cortisol was higher in Ex(20J) and Ex(80J) compared to C. There was significantly lower value of serum cortisol in HEx(20J) compared to Ex(80J). Serum progesterone levels were significantly lower in Ex(20J) and Ex(80J) compared to C. However, serum progesterone levels were significantly higher in HEx(20J) and HEx(80J) compared to Ex(20J) and Ex(80J). Relative uterine weights were significantly greater in HEx(20J) compared to C and HEx(80J), respectively. There was no significant difference in estradiol level and relative ovarian weights among all the groups. Therefore, honey elicited beneficial effects in reducing the increase of cortisol and in increasing the reduce of progesterone levels induced by different intensities jumping exercise in female rats.
    Matched MeSH terms: Physical Conditioning, Animal*
  10. Appukutty M, Ramasamy K, Rajan S, Vellasamy S, Ramasamy R, Radhakrishnan AK
    Benef Microbes, 2015;6(4):491-6.
    PMID: 25691103 DOI: 10.3920/BM2014.0129
    Probiotics are live microorganisms that confer health benefits through the gastrointestinal microbiota. This nutritional supplement may benefit athletes who undergo rigorous training by maintaining their gastrointestinal functions and overall health. In this study the influence of moderate physical exercise using a graded treadmill exercise, alone or in combination with the consumption of a soy product fermented with Lactobacillus plantarum LAB12 (LAB12), on tumour necrosis factor alpha (TNF-α) responses was investigated in a murine model. Male BALB/c mice were randomly divided into four groups of six mice each (control, exercise alone, LAB12 and LAB12 + exercise). Mice treated with the potential probiotic LAB12 were orally gavaged for 42 days. At autopsy, blood and spleen from the animals were collected. The splenocytes were cultured in the presence of a mitogen, concanavalin A (Con A). The amount of TNF-α produced by the Con A-stimulated splenocytes was quantified using ELISA, while their proliferation was determined using the [(3)H]-thymidine incorporation method. This study shows that LAB12-supplemented and exercise-induced mice showed marked increase (P<0.05) in cell proliferation compared to the control animals. TNF-α production was suppressed (P<0.05) in the LAB12 group compared to the untreated mice. These results demonstrate that supplementation with LAB12 has immunomodulatory effects, under conditions of moderate physical exercise, which may have implications for human athletes. Further investigation in human trials is warranted to confirm and extrapolate these findings.
    Matched MeSH terms: Physical Conditioning, Animal*
  11. Raipuria M, Bahari H, Morris MJ
    PLoS One, 2015;10(4):e0120980.
    PMID: 25853572 DOI: 10.1371/journal.pone.0120980
    Obesity during pregnancy contributes to the development of metabolic disorders in offspring. Maternal exercise may limit gestational weight gain and ameliorate these programming effects. We previously showed benefits of post-weaning voluntary exercise in offspring from obese dams. Here we examined whether voluntary exercise during pregnancy influences lipid and glucose homeostasis in muscle and fat in offspring of both lean and obese dams. Female Sprague-Dawley rats were fed chow (C) or high fat (F) diet for 6 weeks before mating. Half underwent voluntary exercise (CE/FE) with a running wheel introduced 10 days prior to mating and available until the dams delivered; others remained sedentary (CS/FS). Male and female pups were killed at postnatal day (PND)19 and retroperitoneal fat and gastrocnemius muscle were collected for gene expression. Lean and obese dams achieved similar modest levels of exercise. At PND1, both male and female pups from exercised lean dams were significantly lighter (CE versus CS), with no effect in those from obese dams. At PND19, maternal obesity significantly increased offspring body weight and adiposity, with no effect of maternal exercise. Exercise significantly reduced insulin concentrations in males (CE/FE versus CS/FS), with reduced glucose in male FE pups. In males, maternal obesity significantly decreased muscle myogenic differentiation 1 (MYOD1) and glucose transporter type 4 (GLUT4) mRNA expressions (FS vs CS); these were normalized by exercise. Maternal exercise upregulated adipose GLUT4, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1α) mRNA expression in offspring of dams consuming chow. Modest voluntary exercise during pregnancy was associated with lower birth weight in pups from lean dams. Maternal exercise appeared to decrease the metabolic risk induced by maternal obesity, improving insulin/glucose metabolism, with greater effects in male than female offspring.
    Matched MeSH terms: Physical Conditioning, Animal*
  12. Mohktar RA, Montgomery MK, Murphy RM, Watt MJ
    Am J Physiol Endocrinol Metab, 2016 07 01;311(1):E128-37.
    PMID: 27189934 DOI: 10.1152/ajpendo.00084.2016
    Cytoplasmic lipid droplets provide a reservoir for triglyceride storage and are a central hub for fatty acid trafficking in cells. The protein perilipin 5 (PLIN5) is highly expressed in oxidative tissues such as skeletal muscle and regulates lipid metabolism by coordinating the trafficking and the reversible interactions of effector proteins at the lipid droplet. PLIN5 may also regulate mitochondrial function, although this remains unsubstantiated. Hence, the aims of this study were to examine the role of PLIN5 in the regulation of skeletal muscle substrate metabolism during acute exercise and to determine whether PLIN5 is required for the metabolic adaptations and enhancement in exercise tolerance following endurance exercise training. Using muscle-specific Plin5 knockout mice (Plin5(MKO)), we show that PLIN5 is dispensable for normal substrate metabolism during exercise, as reflected by levels of blood metabolites and rates of glycogen and triglyceride depletion that were indistinguishable from control (lox/lox) mice. Plin5(MKO) mice exhibited a functional impairment in their response to endurance exercise training, as reflected by reduced maximal running capacity (20%) and reduced time to fatigue during prolonged submaximal exercise (15%). The reduction in exercise performance was not accompanied by alterations in carbohydrate and fatty acid metabolism during submaximal exercise. Similarly, mitochondrial capacity (mtDNA, respiratory complex proteins, citrate synthase activity) and mitochondrial function (oxygen consumption rate in muscle fiber bundles) were not different between lox/lox and Plin5(MKO) mice. Thus, PLIN5 is dispensable for normal substrate metabolism during exercise and is not required to promote mitochondrial biogenesis or enhance the cellular adaptations to endurance exercise training.
    Matched MeSH terms: Physical Conditioning, Animal*
  13. Hong YH, Frugier T, Zhang X, Murphy RM, Lynch GS, Betik AC, et al.
    J Appl Physiol (1985), 2015 May 1;118(9):1113-21.
    PMID: 25749441 DOI: 10.1152/japplphysiol.00056.2015
    Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSμ (nNOSμ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSμ(-/-) and nNOSμ(+/+) mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor N(G)-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSμ(-/-) and nNOSμ(+/+) mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (~4%) were detected in muscles from nNOSμ(-/-) mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSμ.
    Matched MeSH terms: Physical Conditioning, Animal/physiology
  14. Dehghan F, Hajiaghaalipour F, Yusof A, Muniandy S, Hosseini SA, Heydari S, et al.
    Sci Rep, 2016 Apr 28;6:25139.
    PMID: 27122001 DOI: 10.1038/srep25139
    Saffron is consumed as food and medicine to treat several illnesses. This study elucidates the saffron effectiveness on diabetic parameters in-vitro and combined with resistance exercise in-vivo. The antioxidant properties of saffron was examined. Insulin secretion and glucose uptake were examined by cultured RIN-5F and L6 myotubes cells. The expressions of GLUT2, GLUT4, and AMPKα were determined by Western blot. Diabetic and non-diabetic male rats were divided into: control, training, extract treatment, training + extract treatment and metformin. The exercise and 40 mg/kg/day saffron treatments were carried out for six weeks. The antioxidant capacity of saffron was higher compare to positive control (P  0.05). Serum glucose, cholesterol, triglyceride, low-density lipoprotein, very low-density lipoprotein, insulin resistance, and glycated hemoglobin levels decreased in treated rats compared to untreated (p  0.05). The findings suggest that saffron consuming alongside exercise could improve diabetic parameters through redox-mediated mechanisms and GLUT4/AMPK pathway to entrap glucose uptake.
    Matched MeSH terms: Physical Conditioning, Animal*
  15. Appukutty M, Radhakrishnan AK, Ramasamy K, Ramasamy R, Abdul Majeed AB, Noor MI, et al.
    BMC Res Notes, 2012;5:649.
    PMID: 23173926 DOI: 10.1186/1756-0500-5-649
    This study examined the effects of bovine colostrum on exercise -induced modulation of antioxidant parameters in skeletal muscle in mice. Adult male BALB/c mice were randomly divided into four groups (control, colostrum alone, exercise and exercise with colostrum) and each group had three subgroups (day 0, 21 and 42). Colostrum groups of mice were given a daily oral supplement of 50 mg/kg body weight of bovine colostrum and the exercise group of mice were made to exercise on the treadmill for 30 minutes per day. Total antioxidants, lipid hydroperoxides, xanthine oxidase and super oxide dismutase level was assayed from the homogenate of hind limb skeletal muscle.
    Matched MeSH terms: Physical Conditioning, Animal
  16. Mosavat M, Ooi FK, Mohamed M
    PMID: 24708608 DOI: 10.1186/1472-6882-14-126
    The effects of high and low jumping exercise intensities combined with honey on bone and gonadotrophins were investigated in eighty four 9 week-old female rats.
    Matched MeSH terms: Physical Conditioning, Animal
  17. Clarke K, Ricciardi S, Pearson T, Bharudin I, Davidsen PK, Bonomo M, et al.
    Cell Rep, 2017 Nov 07;21(6):1507-1520.
    PMID: 29117557 DOI: 10.1016/j.celrep.2017.10.040
    Regular endurance training improves muscle oxidative capacity and reduces the risk of age-related disorders. Understanding the molecular networks underlying this phenomenon is crucial. Here, by exploiting the power of computational modeling, we show that endurance training induces profound changes in gene regulatory networks linking signaling and selective control of translation to energy metabolism and tissue remodeling. We discovered that knockdown of the mTOR-independent factor Eif6, which we predicted to be a key regulator of this process, affects mitochondrial respiration efficiency, ROS production, and exercise performance. Our work demonstrates the validity of a data-driven approach to understanding muscle homeostasis.
    Matched MeSH terms: Physical Conditioning, Animal
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links