Displaying all 5 publications

Abstract:
Sort:
  1. Yong CM, Yehgambaram PAP, Lee SWH
    PLoS One, 2024;19(2):e0298130.
    PMID: 38300930 DOI: 10.1371/journal.pone.0298130
    INTRODUCTION: Ovarian cancer is one of the most common cancer among women in Malaysia. Patients with ovarian cancer are often diagnosed at an advanced stage. Despite initial response to surgery and chemotherapy, most patients will experience a relapse. Olaparib has been reported have promising effects among BRCA mutated ovarian cancer patients. This study aimed to evaluate the cost-effectiveness of olaparib as a maintenance therapy for BRCA ovarian cancer in Malaysia.

    METHODS: We developed a four-state partitioned survival model which compared treatment with olaparib versus routine surveillance (RS) from a Malaysian healthcare perspective. Mature overall survival (OS) data from the SOLO-1 study were used and extrapolated using parametric models. Medication costs and healthcare resource usage costs were derived from local inputs and publications. Deterministic and probabilistic sensitivity analyses (PSA) were performed to explore uncertainties.

    RESULTS: In Malaysia, treating patients with olaparib was found to be more costly compared to RS, with an incremental cost of RM149,858 (USD 33,213). Patients treated with olaparib increased life years by 3.05 years and increased quality adjusted life years (QALY) by 2.76 (9.45 years vs 6.40 years; 7.62 vs 4.86 QALY). This translated to an incremental cost-effectiveness ratio (ICER) of RM 49,159 (USD10,895) per life year gained and RM54,357 (USD 12,047) per QALY gained, respectively. ICERs were most sensitive to time horizon of treatment, discount rate for outcomes, cost of treatment and health state costs, but was above the RM53,770/QALY threshold.

    CONCLUSION: The use of olaparib is currently not a cost-effective strategy compared to routine surveillance based upon the current price in Malaysia for people with ovarian cancer with BRCA mutation, despite the improvement in overall survival.

    Matched MeSH terms: Phthalazines*
  2. Yusoh NA, Tiley PR, James SD, Harun SN, Thomas JA, Saad N, et al.
    J Med Chem, 2023 May 25;66(10):6922-6937.
    PMID: 37185020 DOI: 10.1021/acs.jmedchem.3c00322
    Synergistic drug combinations can extend the use of poly(ADP-ribose) polymerase inhibitors (PARPi) such as Olaparib to BRCA-proficient tumors and overcome acquired or de novo drug resistance. To identify new synergistic combinations for PARPi, we screened a "micro-library" comprising a mix of commercially available drugs and DNA-binding ruthenium(II) polypyridyl complexes (RPCs) for Olaparib synergy in BRCA-proficient triple-negative breast cancer cells. This identified three hits: the natural product Curcumin and two ruthenium(II)-rhenium(I) polypyridyl metallomacrocycles. All combinations identified were effective in BRCA-proficient breast cancer cells, including an Olaparib-resistant cell line, and spheroid models. Mechanistic studies indicated that synergy was achieved via DNA-damage enhancement and resultant apoptosis. Combinations showed low cytotoxicity toward non-malignant breast epithelial cells and low acute and developmental toxicity in zebrafish embryos. This work identifies RPC metallomacrocycles as a novel class of agents for cancer combination therapy and provides a proof of concept for the inclusion of metallocompounds within drug synergy screens.
    Matched MeSH terms: Phthalazines/pharmacology; Phthalazines/therapeutic use
  3. Gao Q, Zhu J, Zhao W, Huang Y, An R, Zheng H, et al.
    Clin Cancer Res, 2022 Jun 01;28(11):2278-2285.
    PMID: 35131903 DOI: 10.1158/1078-0432.CCR-21-3023
    PURPOSE: In patients with platinum-sensitive relapsed (PSR) ovarian cancer, olaparib maintenance monotherapy significantly improves progression-free survival (PFS) versus placebo. However, evidence in the Asian population is lacking. This is the first study to evaluate olaparib efficacy and tolerability exclusively in Asian patients with PSR ovarian cancer.

    PATIENTS AND METHODS: Considering the limited placebo effect and significant clinical benefit of olaparib in previous trials, and the rapid approval of olaparib in China, this phase III study was designed as an open-label, single-arm trial. Patients with high-grade epithelial PSR ovarian cancer were enrolled from country-wide clinical centers across China and Malaysia. Patients received oral olaparib (300 mg) twice daily until disease progression or unacceptable toxicity. Primary endpoint was median PFS (mPFS). Primary analysis of PFS using the Kaplan-Meier method was performed when data reached 60% maturity (clinicaltrials.gov NCT03534453).

    RESULTS: Between 2018 and 2020, 225 patients were enrolled, and 224 received olaparib; 35.7% had received ≥3 lines of chemotherapy, 35.3% had achieved complete response to their last line of platinum-based chemotherapy, and 41.1% had a platinum-free interval ≤12 months. At primary data cut-off (December 25, 2020), overall mPFS was 16.1 months; mPFS was 21.2 and 11.0 months in BRCA-mutated and wild-type BRCA subgroups, respectively. Adverse events (AE) occurred in 99.1% of patients (grade ≥3, 48.7%); 9.4% discontinued therapy due to treatment-related AEs.

    CONCLUSIONS: Olaparib maintenance therapy was highly effective and well tolerated in Asian patients with PSR ovarian cancer, regardless of BRCA status. This study highlights the promising efficacy of olaparib in this Asian population. See related commentary by Nicum and Blagden, p. 2201.

    Matched MeSH terms: Phthalazines/administration & dosage; Phthalazines/adverse effects
  4. Yusoh NA, Chia SL, Saad N, Ahmad H, Gill MR
    Sci Rep, 2023 Jan 26;13(1):1456.
    PMID: 36702871 DOI: 10.1038/s41598-023-28454-x
    Poly(ADP-ribose) polymerase (PARP) are critical DNA repair enzymes that are activated as part of the DNA damage response (DDR). Although inhibitors of PARP (PARPi) have emerged as small molecule drugs and have shown promising therapeutic effects, PARPi used as single agents are clinically limited to patients with mutations in germline breast cancer susceptibility gene (BRCA). Thus, novel PARPi combination strategies may expand their usage and combat drug resistance. In recent years, ruthenium polypyridyl complexes (RPCs) have emerged as promising anti-cancer candidates due to their attractive DNA binding properties and distinct mechanisms of action. Previously, we reported the rational combination of the RPC DNA replication inhibitor [Ru(dppz)2(PIP)]2+ (dppz = dipyrido[3,2-a:2',3'-c]phenazine, PIP = 2-(phenyl)-imidazo[4,5-f][1,10]phenanthroline), "Ru-PIP", with the PARPi Olaparib in breast cancer cells. Here, we expand upon this work and examine the combination of Ru-PIP with Olaparib for synergy in lung cancer cells, including in 3D lung cancer spheroids, to further elucidate mechanisms of synergy and additionally assess toxicity in a zebrafish embryo model. Compared to single agents alone, Ru-PIP and Olaparib synergy was observed in both A549 and H1975 lung cancer cell lines with mild impact on normal lung fibroblast MRC5 cells. Employing the A549 cell line, synergy was confirmed by loss in clonogenic potential and reduced migration properties. Mechanistic studies indicated that synergy is accompanied by increased double-strand break (DSB) DNA damage and reactive oxygen species (ROS) levels which subsequently lead to cell death via apoptosis. Moreover, the identified combination was successfully able to inhibit the growth of A549 lung cancer spheroids and acute zebrafish embryos toxicity studies revealed that this combination showed reduced toxicity compared to single-agent Ru-PIP.
    Matched MeSH terms: Phthalazines/pharmacology
  5. Nur Husna SM, Tan HT, Mohamud R, Dyhl-Polk A, Wong KK
    Ther Adv Med Oncol, 2018;10:1758835918808509.
    PMID: 30542378 DOI: 10.1177/1758835918808509
    Breast cancer is the global leading cause of cancer-related death in women and it represents a major health burden worldwide. One of the promising breast cancer therapeutic avenues is through small molecule inhibitors (SMIs) which have undergone rapid progress with successful clinical trials. Recently, three emerging and vital groups of proteins are targeted by SMIs for breast cancer treatment, namely cyclin-dependent kinase 4 and 6 (CDK4/6), poly (adenosine diphosphate-ribose) polymerase (PARP) and phosphoinositide 3-kinase (PI3K). Several of these inhibitors have been approved for the treatment of breast cancer patients or progressed into late-stage clinical trials. Thus, modeling from these successful clinical trials, as well as their limitations, is pivotal for future development and trials of other inhibitors or therapeutic regimens targeting breast cancer patients. In this review, we discuss eight recently approved or novel SMIs against CDK4/6 (palbociclib, ribociclib and abemaciclib), PARP (olaparib, veliparib and talazoparib), and PI3K (buparlisib and alpelisib). The mechanisms of action, series of clinical trials and limitations are described for each inhibitor.
    Matched MeSH terms: Phthalazines
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links