Displaying publications 1 - 20 of 52 in total

Abstract:
Sort:
  1. Quah HJ, Cheong KY
    Nanoscale Res Lett, 2013;8(1):53.
    PMID: 23360596 DOI: 10.1186/1556-276X-8-53
    The effects of different post-deposition annealing ambients (oxygen, argon, forming gas (95% N2 + 5% H2), and nitrogen) on radio frequency magnetron-sputtered yttrium oxide (Y2O3) films on n-type gallium nitride (GaN) substrate were studied in this work. X-ray photoelectron spectroscopy was utilized to extract the bandgap of Y2O3 and interfacial layer as well as establishing the energy band alignment of Y2O3/interfacial layer/GaN structure. Three different structures of energy band alignment were obtained, and the change of band alignment influenced leakage current density-electrical breakdown field characteristics of the samples subjected to different post-deposition annealing ambients. Of these investigated samples, ability of the sample annealed in O2 ambient to withstand the highest electric breakdown field (approximately 6.6 MV/cm) at 10-6 A/cm2 was related to the largest conduction band offset of interfacial layer/GaN (3.77 eV) and barrier height (3.72 eV).
    Matched MeSH terms: Photoelectron Spectroscopy
  2. Kamarulzaman N, Kasim MF, Rusdi R
    Nanoscale Res Lett, 2015 Dec;10(1):1034.
    PMID: 26319225 DOI: 10.1186/s11671-015-1034-9
    Band gap change in doped ZnO is an observed phenomenon that is very interesting from the fundamental point of view. This work is focused on the preparation of pure and single phase nanostructured ZnO and Cu as well as Mn-doped ZnO for the purpose of understanding the mechanisms of band gap narrowing in the materials. ZnO, Zn0.99Cu0.01O and Zn0.99Mn0.01O materials were prepared using a wet chemistry method, and X-ray diffraction (XRD) results showed that all samples were pure and single phase. UV-visible spectroscopy showed that materials in the nanostructured state exhibit band gap widening with respect to their micron state while for the doped compounds exhibited band gap narrowing both in the nano and micron states with respect to the pure ZnO materials. The degree of band gap change was dependent on the doped elements and crystallite size. X-ray photoelectron spectroscopy (XPS) revealed that there were shifts in the valence bands. From both UV-visible and XPS spectroscopy, it was found that the mechanism for band gap narrowing was due to the shifting of the valance band maximum and conduction band minimum of the materials. The mechanisms were different for different samples depending on the type of dopant and dimensional length scales of the crystallites.
    Matched MeSH terms: Photoelectron Spectroscopy
  3. Khyasudeen MF, Nowakowski PJ, Tan HS
    J Phys Chem B, 2019 02 14;123(6):1359-1364.
    PMID: 30657672 DOI: 10.1021/acs.jpcb.9b00099
    We use two-dimensional electronic spectroscopy to measure the ultrafast correlation dynamics between the Q x and Q y transitions in chlorophyll molecules. We derive a variation to the center line slope method to quantify the frequency fluctuation cross-correlation function, C xy( Tw). Compared with the frequency fluctuation correlation function of the Q y transition, we observe that there is only a minimal correlation between the Q x and Q y transition, even at the ultrashort timescale of ∼100 fs, which then decays to zero in a time scale of ∼2 ps.
    Matched MeSH terms: Photoelectron Spectroscopy
  4. Zaidi Embong
    MyJurnal
    This review briefly describes some of the techniques available for analysing surfaces and illustrates their usefulness with a few examples such as a metal and alloy. In particular, Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and laser Raman spectroscopy are all described as advanced surface analytical techniques. In analysing a surface, AES and XPS would normally be considered first, with AES being applied where high spatial resolution is required and XPS where chemical state information is needed. Laser Raman spectroscopy is useful for determining molecular bonding. A combination of XPS, AES and Laser Raman spectroscopy can give quantitative analysis from the top few atomic layers with a lateral spatial resolution of
    Matched MeSH terms: Photoelectron Spectroscopy
  5. Tran HN, Pham VV, Vo DN, Nguyen-Tri P
    Chemosphere, 2019 Oct;233:988-990.
    PMID: 30853115 DOI: 10.1016/j.chemosphere.2019.02.084
    This article aims to discuss (1) the incorrect identification of Cr(III) and Cr(VI) binding energies in the Cr 2p XPS (X-ray photoelectron spectroscopy) spectra of the laden adsorbent (the nZVI-BC sample after Cr(VI) adsorption), (2) misconception regarding the Weber-Morris intraparticle diffusion model, and (3) inconsistency between the experiential data and the Thomas adsorption rate constants. The authors hope that our comments are beneficial for other researchers to avoid the undesirable mistakes.
    Matched MeSH terms: Photoelectron Spectroscopy
  6. Md Saad SK, Ali Umar A, Ali Umar MI, Tomitori M, Abd Rahman MY, Mat Salleh M, et al.
    ACS Omega, 2018 Mar 31;3(3):2579-2587.
    PMID: 31458546 DOI: 10.1021/acsomega.8b00109
    This paper reports the synthesis of two-dimensional, hierarchical, porous, and (001)-faceted metal (Ag, Zn, and Al)-doped TiO2 nanostructures (TNSs) and the study of their photocatalytic activity. Two-dimensional metal-doped TNSs were synthesized using the hydrolysis of ammonium hexafluorotitanate in the presence of hexamethylenetetramine and metal precursors. Typical morphology of metal-doped TNSs is a hierarchical nanosheet that is composed of randomly stacked nanocubes (dimensions of up to 5 μm and 200 nm in edge length and thickness, respectively) and has dominant (001) facets exposed. Raman analysis and X-ray photoelectron spectroscopy results indicated that the Ag doping, compared to Zn and Al, much improves the crystallinity degree and at the same time dramatically lowers the valence state binding energy of the TNS and provides an additional dopant oxidation state into the system for an enhanced electron-transfer process and surface reaction. These are assumed to enhance the photocatalytic of the TNS. In a model of photocatalytic reaction, that is, rhodamine B degradation, the AgTNS demonstrates a high photocatalytic activity by converting approximately 91% of rhodamine B within only 120 min, equivalent to a rate constant of 0.018 m-1 and ToN and ToF of 94 and 1.57 min-1, respectively, or 91.1 mmol mg-1 W-1 degradation when normalized to used light source intensity, which is approximately 2 times higher than the pristine TNS and several order higher when compared to Zn- and Al-doped TNSs. Improvement of the crystallinity degree, decrease in the defect density and the photogenerated electron and hole recombination, and increase of the oxygen vacancy in the AgTNS are found to be the key factors for the enhancement of the photocatalytic properties. This work provides a straightforward strategy for the preparation of high-energy (001) faceted, two-dimensional, hierarchical, and porous Ag-doped TNSs for potential use in photocatalysis and photoelectrochemical application.
    Matched MeSH terms: Photoelectron Spectroscopy
  7. Shah M, Ayob MTM, Rosdan R, Yaakob N, Embong Z, Othman NK
    ScientificWorldJournal, 2020;2020:3989563.
    PMID: 32774180 DOI: 10.1155/2020/3989563
    H2S gas when exposed to metal can be responsible for both general and localized corrosion, which depend on several parameters such as H2S concentration and the corrosion product layer formed. Therefore, the formation of passive film on 316L steel when exposed to H2S environment was investigated using several analysis methods such as FESEM and STEM/EDS analyses, which identified a sulfur species underneath the porous structure of the passive film. X-ray photoelectron spectroscopy analysis demonstrated that the first layer of CrO3 and Cr2O3 was dissolved, accelerated by the presence of H2S-Cl-. An FeS2 layer was formed by incorporation of Fe and sulfide; then, passivation by Mo took place by forming a MoO2 layer. NiO, Ni(OH)2, and NiS barriers are formed as final protection for 316L steel. Therefore, Ni and Mo play an important role as a dual barrier to maintain the stability of 316L steel in high pH2S environments. For safety concern, this paper is aimed to point out a few challenges dealing with high partial pressure of H2S and limitation of 316L steel under highly sour condition for the oil and gas production system.
    Matched MeSH terms: Photoelectron Spectroscopy
  8. Uda MNA, Gopinath SCB, Hashim U, Halim NH, Parmin NA, Uda MNA, et al.
    3 Biotech, 2021 May;11(5):205.
    PMID: 33868892 DOI: 10.1007/s13205-021-02740-9
    This paper describes the synthesis of graphene-based activated carbon from carbonaceous rice straw fly ash in an electrical furnace and the subsequent potassium hydroxide extraction. The produced graphene has a proper morphological structure; flakes and a rough surface can be observed. The average size of the graphene was defined as up to 2000 nm and clarification was provided by high-resolution microscopes (FESEM and FETEM). Crystallinity was confirmed by surface area electron diffraction. The chemical bonding from the graphene was clearly observed, with -C=C- and O-H stretching at peaks of 1644 cm-1 and 3435 cm-1, respectively. Impurities in the graphene were found using X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The measured size, according to zeta-potential analysis, was 8722.2 ± 25 nm, and the average polydispersity index was 0.576. The stability of the mass reduction was analyzed by a thermogravimetric at 100 °C, with a final reduction of ~ 11%.
    Matched MeSH terms: Photoelectron Spectroscopy
  9. Sadri R, Hosseini M, Kazi SN, Bagheri S, Zubir N, Solangi KH, et al.
    J Colloid Interface Sci, 2017 Oct 15;504:115-123.
    PMID: 28531649 DOI: 10.1016/j.jcis.2017.03.051
    In this study, we propose an innovative, bio-based, environmentally friendly approach for the covalent functionalization of multi-walled carbon nanotubes using clove buds. This approach is innovative because we do not use toxic and hazardous acids which are typically used in common carbon nanomaterial functionalization procedures. The MWCNTs are functionalized in one pot using a free radical grafting reaction. The clove-functionalized MWCNTs (CMWCNTs) are then dispersed in distilled water (DI water), producing a highly stable CMWCNT aqueous suspension. The CMWCNTs are characterized using Raman spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. The electrostatic interactions between the CMWCNT colloidal particles in DI water are verified via zeta potential measurements. UV-vis spectroscopy is also used to examine the stability of the CMWCNTs in the base fluid. The thermo-physical properties of the CMWCNT nano-fluids are examined experimentally and indeed, this nano-fluid shows remarkably improved thermo-physical properties, indicating its superb potential for various thermal applications.
    Matched MeSH terms: Photoelectron Spectroscopy
  10. Solodovnikov SF, Atuchin VV, Solodovnikova ZA, Khyzhun OY, Danylenko MI, Pishchur DP, et al.
    Inorg Chem, 2017 Mar 20;56(6):3276-3286.
    PMID: 28266857 DOI: 10.1021/acs.inorgchem.6b02653
    Cs2Pb(MoO4)2crystals were prepared by crystallization from their own melt, and the crystal structure has been studied in detail. At 296 K, the molybdate crystallizes in the low-temperature α-form and has a monoclinic palmierite-related superstructure (space group C2/m, a = 2.13755(13) nm, b = 1.23123(8) nm, c = 1.68024(10) nm, β = 115.037(2)°, Z = 16) possessing the largest unit cell volume, 4.0066(4) nm3, among lead-containing palmierites. The compound undergoes a distortive phase transition at 635 K and incongruently melts at 943 K. The electronic structure of α-Cs2Pb(MoO4)2was explored by using X-ray emission spectroscopy (XES) and X-ray photoelectron spectroscopy methods. For α-Cs2Pb(MoO4)2, the photoelectron core-level and valence-band spectra and the XES band representing the energy distribution of Mo 4d and O 2p states were recorded. Our results allow one to conclude that the Mo 4d and O 2p states contribute mainly to the central part and at the top of the valence band, respectively, with also significant contributions throughout the whole valence-band region of the molybdate under consideration.
    Matched MeSH terms: Photoelectron Spectroscopy
  11. Fathul Karim Sahrani, Madzlan Abd. Aziz, Zaharah Ibrahim, Adibah Yahya
    The aim of this study was to determine the surface chemistry during biocorrosion process on growth and on the production of exopolymeric substances (EPS) in batch cultures of mix-strains of marine sulphate-reducing bacteria (SRB) isolated from Malaysian Shipyard and Engineering Harbours, Pasir Gudang. The EPS and precipitates were analyzed by x-ray photoelectron spectroscopy (XPS). The XPS results indicate that Fe(2p3/2) spectrum for iron sulphide can be fitted with Fe(II) and Fe(III) components, both corresponding to Fe-S bond types. The absence of oxide oxygen in the O(1s) spectrum and Fe(III)-O bond types in the Fe(2p3/2) spectrum supports the conclusion that iron sulphides are composed of both ferric and ferrous iron coordinated with monosulphide and disulphide.
    Matched MeSH terms: Photoelectron Spectroscopy
  12. Abu Bakar Mohamad, Wan Ramli Wan Daud, Amir Kadhum, Fathi Messaud, Mohd. Ambar Yarmo
    Chemical structure of treated and untreated Aciplex membrane has been studied by X-ray Photoelectron Spectroscopy (XPS). Survey spectra showed that both membrane surfaces consist of Fluorine, Carbon, Oxygen, Sulphur and trace of Titanium. Binding energies for the elements are (C1s at 290.6 eV, F1s at 687.5 eV, O1s at 531.3 eV, S2P at 168.1 eV and Ti2P at 454.4 eV). Analysis of narrow scan XPS-spectra of each element demonstrate the presence of (-CF, -CF2, CF3, C-O-C and SO-3) groups, which are in agreement with the structural formula as disclosed by the manufacturer. There is no significant change in chemical states of untreated and treated membrane, which reflect its stability to treatment conditions.
    Struktur kimia Aciplex membran yang sudah dibersihkan dan yang belum dibersihkan telah dikaji menggunakan Spektroskopi Fotoelektron Sinaran-X (XPS). Spektra yang telah ditinjau menunjukkan bahawa kedua-dua permukaan membran mengandungi Florin, Karbon, Oksigen, Sulfur dan sedikit Titanium. Tenaga ikatan bagi unsur-unsur tersebut adalah (C1s pada 290.6 eV, F1s pada 687.5 eV. O1s pada 531.3 eV, S2P pada 168.2 eV dan Ti2P pada 454.4 eV). Analisis imbasan kecil spektra-xps bagi setiap unsur menunjukkan kehadiran kilmpulan (-CF, - CF2, CF3, C-O-C dan SO-3) yang bertepatan dengan formula struktur dari pihak pembekal. Tiada terdapat perubahan nyata berhubung dengan keadaan kimia membran yang sudah dibersihkan dan yang belum dibersihkan yang menggambarkan kestabilannya terhadap keadaan pembersihan.
    Matched MeSH terms: Photoelectron Spectroscopy
  13. Naauman Z, Rajion ZAB, Maliha S, Hariy P, Muhammad QS, Noor HAR
    Eur J Dent, 2019 Feb;13(1):114-118.
    PMID: 31170762 DOI: 10.1055/s-0039-1688741
    OBJECTIVE: The carbon, titanium, and oxygen levels on titanium implant surfaces with or without ultraviolet (UV) pretreatment were evaluated at different wavelengths through X-ray photoelectron spectroscopy (XPS).

    MATERIALS AND METHODS: This interventional experimental study was conducted on nine Dio UFII implants with hybrid sandblasted and acid-etched (SLA) surface treatments, divided equally into three groups. Control group A samples were not given UV irradiation, while groups B and C samples were given UVA (382 nm, 25 mWcm2) and UVC (260 nm, 15 mWcm2) irradiation, respectively. The atomic ratio of carbon, titanium, and oxygen was compared through XPS.

    RESULTS: Mean carbon-to-titanium ratio and C1 peaks considerably increased in Group A compared to those in experimental Groups B and C. The intensity of Ti2p and O1s peaks was more pronounced for group C compared to that for groups A and B.

    CONCLUSIONS: Although the decrease in surface hydrocarbons was the same in both UV-treated groups, the peak intensity of oxygen increased in the UVC-treated group. Thus, it can be concluded that compared with UVA irradiation, UVC irradiation has the potential to induce more hydrophilicity on SLA-coated implants.

    Matched MeSH terms: Photoelectron Spectroscopy
  14. Lim K, Abdul Hamid MA, Shamsudin R, Al-Hardan NH, Mansor I, Chiu W
    Materials (Basel), 2016 Apr 20;9(4).
    PMID: 28773425 DOI: 10.3390/ma9040300
    In this paper, we address the synthesis of nano-coalesced microstructured zinc oxide thin films via a simple thermal evaporation process. The role of synthesis temperature on the structural, morphological, and optical properties of the prepared zinc oxide samples was deeply investigated. The obtained photoluminescence and X-ray photoelectron spectroscopy outcomes will be used to discuss the surface structure defects of the prepared samples. The results indicated that the prepared samples are polycrystalline in nature, and the sample prepared at 700 °C revealed a tremendously c-axis oriented zinc oxide. The temperature-driven morphological evolution of the zinc oxide nano-coalesced microstructures was perceived, resulting in transformation of quasi-mountain chain-like to pyramidal textured zinc oxide with increasing the synthesis temperature. The results also impart that the sample prepared at 500 °C shows a higher percentage of the zinc interstitial and oxygen vacancies. Furthermore, the intensity of the photoluminescence emission in the ultraviolet region was enhanced as the heating temperature increased from 500 °C to 700 °C. Lastly, the growth mechanism of the zinc oxide nano-coalesced microstructures is discussed according to the reaction conditions.
    Matched MeSH terms: Photoelectron Spectroscopy
  15. Fatin MF, Rahim Ruslinda A, Gopinath SCB, Arshad MKM
    Int J Biol Macromol, 2019 Mar 15;125:414-422.
    PMID: 30529550 DOI: 10.1016/j.ijbiomac.2018.12.066
    Interaction between split RNA aptamer and the clinically important target, HIV-1 Tat was investigated on a biosensing surface transduced by functionally choreographed multiwall carbon nanotubes (MWCNTs). Acid oxidation was performed to functionalize MWCNTs with carboxyl functional groups. X-ray photoelectron spectroscopy analysis had profound ~2.91% increment in overall oxygen group and ~1% increment was noticed with a specific carboxyl content owing to CO and OCO bonding. The interaction between split RNA aptamer and HIV-1 Tat protein was quantified by electrical measurements with the current signal (Ids) over a gate voltage (Vgs). Initially, 34.4 mV gate voltage shift was observed by the immobilization of aptamer on MWCNT. With aptamer and HIV-1 Tat interaction, the current flow was decreased with the concomitant gate voltage shift of 23.5 mV. The attainment of sensitivity with split aptamer and HIV-1 Tat interaction on the fabricated device was 600 pM. To ensure the genuine interaction of aptamer with HIV-1 Tat, other HIV-1 proteins, Nef and p24 were interacted with aptamer and they displayed the negligible interferences with gate voltage shift of 3.5 mV and 5.7 mV, which shows 4 and 2.5 folds lesser than HIV-1 Tat interaction, respectively.
    Matched MeSH terms: Photoelectron Spectroscopy/methods
  16. Sutirman ZA, Sanagi MM, Abd Karim KJ, Wan Ibrahim WA, Jume BH
    Int J Biol Macromol, 2018 Sep;116:255-263.
    PMID: 29746971 DOI: 10.1016/j.ijbiomac.2018.05.031
    In this study, the Cu(II) and Cd(II) ions removal behavior of crosslinked chitosan beads grafted poly(methacrylamide) (abbreviated as crosslinked chitosan-g-PMAm) from single metal ion solutions was investigated. The modified chitosan beads presented a remarkable improvement in acid resistance. The batch experiments demonstrated that pH of solution played a significant role in adsorption. It was found that the adsorption of Cu(II) and Cd(II) were optimum at pH 4 and pH 5, respectively. The maximum adsorption capacities for Cu(II) and Cd(II) based on Langmuir equation were 140.9 mg g-1 and 178.6 mg g-1, respectively. Pseudo-second order gave a better fit for adsorption data with respect to linearity coefficients than pseudo-first order suggesting that chemisorption or electron transfer is the dominant mechanism of the metal ions onto crosslinked chitosan-g-PMAm. In addition, X-ray photoelectron spectroscopy (XPS) investigations revealed that adsorption of both metal ions took place on the surfaces of crosslinked chitosan-g-PMAm by chelation through CNH2, CO and CO groups. Overall, the modified chitosan has proved a promising adsorbent for removal of metal ions.
    Matched MeSH terms: Photoelectron Spectroscopy/methods
  17. Perumal V, Hashim U, Gopinath SC, Haarindraprasad R, Foo KL, Balakrishnan SR, et al.
    Sci Rep, 2015 Jul 16;5:12231.
    PMID: 26178973 DOI: 10.1038/srep12231
    Hybrid gold nanostructures seeded into nanotextured zinc oxide (ZnO) nanoflowers (NFs) were created for novel biosensing applications. The selected 'spotted NFs' had a 30-nm-thick gold nanoparticle (AuNP) layer, chosen from a range of AuNP thicknesses, sputtered onto the surface. The generated nanohybrids, characterized by morphological, physical and structural analyses, were uniformly AuNP-seeded onto the ZnO NFs with an average length of 2-3 μm. Selective capture of molecular probes onto the seeded AuNPs was evidence for the specific interaction with DNA from pathogenic Leptospirosis-causing strains via hybridization and mis-match analyses. The attained detection limit was 100 fM as determined via impedance spectroscopy. High levels of stability, reproducibility and regeneration of the sensor were obtained. Selective DNA immobilization and hybridization were confirmed by nitrogen and phosphorus peaks in an X-ray photoelectron spectroscopy analysis. The created nanostructure hybrids illuminate the mechanism of generating multiple-target, high-performance detection on a single NF platform, which opens a new avenue for array-based medical diagnostics.
    Matched MeSH terms: Photoelectron Spectroscopy
  18. Iqbal J, Numan A, Omaish Ansari M, Jafer R, Jagadish PR, Bashir S, et al.
    Polymers (Basel), 2020 Nov 27;12(12).
    PMID: 33261072 DOI: 10.3390/polym12122816
    In this study, silver (Ag) and cobalt oxide (Co3O4) decorated polyaniline (PANI) fibers were prepared by the combination of in-situ aniline oxidative polymerization and the hydrothermal methodology. The morphology of the prepared Ag/Co3O4@PANI ternary nanocomposite was studied by scanning electron microscopy and transmission electron microscopy, while the structural studies were carried out by X-ray diffraction and X-ray photoelectron spectroscopy. The morphological characterization revealed fibrous shaped PANI, coated with Ag and Co3O4 nanograins, while the structural studies revealed high purity, good crystallinity, and slight interactions among the constituents of the Ag/Co3O4@PANI ternary nanocomposite. The electrochemical performance studies revealed the enhanced performance of the Ag/Co3O4@PANI nanocomposite due to the synergistic/additional effect of Ag, Co3O4 and PANI compared to pure PANI and Co3O4@PANI. The addition of the Ag and Co3O4 provided an extended site for faradaic reactions leading to the high specific capacity. The Ag/Co3O4@PANI ternary nanocomposite exhibited an excellent specific capacity of 262.62 C g-1 at a scan rate of 3 mV s-1. The maximum energy and power density were found to be 14.01 Wh kg-1 and 165.00 W kg-1, respectively. The cyclic stability of supercapattery (Ag/Co3O4@PANI//activated carbon) consisting of a battery type electrode demonstrated a gradual increase in specific capacity with a continuous charge-discharge cycle until ~1000 cycles, then remained stable until 2500 cycles and later started decreasing, thereby showing the cyclic stability of 121.03% of its initial value after 3500 cycles.
    Matched MeSH terms: Photoelectron Spectroscopy
  19. Kasim MF, Darman AKAB, Yaakob MK, Badar N, Kamarulzaman N
    Phys Chem Chem Phys, 2019 Sep 11;21(35):19126-19146.
    PMID: 31432825 DOI: 10.1039/c9cp01664c
    In this study, nano- and microsized zinc oxide (ZnO) materials were doped with different manganese (Mn) contents (1-5 mol%) via a simple sol-gel method. The structural, morphological, optical and chemical environments of the materials were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), UV-visible spectroscopy (UV-vis) and X-ray photoelectron spectroscopy (XPS). XRD results revealed that all synthesised materials were pure and single phased with a hexagonal wurtzite structure of ZnO. However, at a low annealing temperature, a nanorod-like shape can be obtained for all Zn(1-x)MnxO materials. In addition, EDX spectra confirmed the presence of Mn in the ZnO lattice and the atomic percentage was nearly equal to the calculated stoichiometry. UV-vis spectroscopy further revealed that materials in nano size exhibited band gap widening with an increase of the Mn content in the ZnO lattice. In contrast, micron state materials exhibited band gap narrowing with increasing Mn content up to 3% and then begin to widen when Mn > 3%. This is because the band gaps of these materials are affected by the dimensions of the crystals and the Mn content in the materials. Furthermore, XPS results revealed the existence of multiple states of Mn in all synthesised materials. By combining the information obtained from UV-vis and the XPS valence band, shifting in the valence band maximum (VBM) and conduction band minimum (CBM) was observed. Based on XPS results, the calculation of density functional theory studies revealed that the presence of Mn2+, Mn3+, and Mn4+ ions in the materials influences the band gap changes. It was also revealed that the nanosized Zn0.99Mn0.01O exhibited a higher photocatalytic activity than the other samples for degrading methylene blue (MB) dyes, owing to its smallest crystallite size.
    Matched MeSH terms: Photoelectron Spectroscopy
  20. Iqbal J, Ansari MO, Numan A, Wageh S, Al-Ghamdi A, Alam MG, et al.
    Polymers (Basel), 2020 Dec 05;12(12).
    PMID: 33291451 DOI: 10.3390/polym12122918
    In this study, ternary composites of polyaniline (PANI) with manganese dioxide (MnO2) nanorods and carbon nanotubes (CNTs) were prepared by employing a hydrothermal methodology and in-situ oxidative polymerization of aniline. The morphological analysis by scanning electron microscopy showed that the MnO2 possessed nanorod like structures in its pristine form, while in the ternary PANI@CNT/MnO2 composite, coating of PANI over CNT/MnO2, rods/tubes were evidently seen. The structural analysis by X-ray diffraction and X-ray photoelectron spectroscopy showed peaks corresponding to MnO2, PANI and CNT, which suggested efficacy of the synthesis methodology. The electrochemical performance in contrast to individual components revealed the enhanced performance of PANI@CNT/MnO2 composite due to the synergistic/additional effect of PANI, CNT and MnO2 compared to pure MnO2, PANI and PANI@CNT. The PANI@CNT/MnO2 ternary composite exhibited an excellent specific capacity of 143.26 C g-1 at a scan rate of 3 mV s-1. The cyclic stability of the supercapattery (PANI@CNT/MnO2/activated carbon)-consisting of a battery type electrode-demonstrated a gradual increase in specific capacity with continuous charge-discharge over ~1000 cycles and showed a cyclic stability of 119% compared to its initial value after 3500 cycles.
    Matched MeSH terms: Photoelectron Spectroscopy
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links