Displaying all 4 publications

Abstract:
Sort:
  1. Chutrakul C, Peberdy JF
    FEMS Microbiol Lett, 2005 Nov 15;252(2):257-65.
    PMID: 16214297
    Many species of Trichoderma have attracted interest as agents for the biological control of soil borne fungal pathogens of a range of crop plants. Research on the biochemical mechanisms associated with this application has focused on the ability of these fungi to produce enzymes which lyse fungal cell walls, and antifungal antibiotics. An important group of the latter are the non-ribosomal peptides called peptaibols. In this study Trichoderma asperellum, a strain used in biological control in Malaysia, was found to produce the peptaibol, trichotoxin. This type of peptide molecule is synthesised by a peptide synthetase (PES) enzyme template encoded by a peptide synthetase (pes) gene. Using nucleotide sequences amplified from adenylation (A-) domains as probes, to hybridise against a lambda FIXII genomic library from T. asperellum, 25 clones were recovered. These were subsequently identified as representative of four groups based on their encoding properties for specific amino acid incorporation modules in a PES. This was based on analysis of their amino acid sequences which showed up to 86% identity to other PESs including TEX 1.
    Matched MeSH terms: Peptide Synthases/genetics*
  2. Shokrollahi N, Ho CL, Zainudin NAIM, Wahab MABA, Wong MY
    Sci Rep, 2021 Aug 11;11(1):16330.
    PMID: 34381084 DOI: 10.1038/s41598-021-95549-8
    Basal stem rot (BSR) of oil palm is a disastrous disease caused by a white-rot fungus Ganoderma boninense Pat. Non-ribosomal peptides (NRPs) synthesized by non-ribosomal peptide synthetases (NRPSs) are a group of secondary metabolites that act as fungal virulent factors during pathogenesis in the host. In this study, we aimed to isolate NRPS gene of G. boninense strain UPMGB001 and investigate the role of this gene during G. boninense-oil palm interaction. The isolated NRPS DNA fragment of 8322 bp was used to predict the putative peptide sequence of different domains and showed similarity with G. sinense (85%) at conserved motifs of three main NRPS domains. Phylogenetic analysis of NRPS peptide sequences demonstrated that NRPS of G. boninense belongs to the type VI siderophore family. The roots of 6-month-old oil palm seedlings were artificially inoculated for studying NRPS gene expression and disease severity in the greenhouse. The correlation between high disease severity (50%) and high expression (67-fold) of G. boninense NRPS gene at 4 months after inoculation and above indicated that this gene played a significant role in the advancement of BSR disease. Overall, these findings increase our knowledge on the gene structure of NRPS in G. boninense and its involvement in BSR pathogenesis as an effector gene.
    Matched MeSH terms: Peptide Synthases/genetics*
  3. Radu S, Toosa H, Rahim RA, Reezal A, Ahmad M, Hamid AN, et al.
    Diagn Microbiol Infect Dis, 2001 Mar;39(3):145-53.
    PMID: 11337180
    Enterococcus species isolated from poultry sources were characterized for their resistance to antibiotics, plasmid content, presence of van genes and their diversity by randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). The results showed that all isolates were multi-resistance to the antibiotics tested. Ampicillin (15/70) followed by chloramphenicol (37/70) were the most active antibiotics tested against the Enterococcus spp. isolates, while the overall resistant rates against the other antibiotics were between 64.3% to 100%. All vancomycin-resistant E. faecalis, E. durans, E. hirae and E. faecium isolates tested by the disk diffusion assay were positive in PCR detection for presence of vanA gene. All E. casseliflavus isolates were positive for vanC2/C3 gene. However, none of the Enterococcus spp. isolates were positive for vanB and vanC1 genes. Plasmids ranging in sizes between 1.1 to ca. 35.8 MDa were detected in 38/70 of the Enterococcus isolates. When the genetic relationship among all isolates of the individual species were tested by RAPD-PCR, genetic differences detected suggested a high genetic polymorphisms of isolates in each individual species. Our results indicates that further epidemiological studies are necessary to elucidate the role of food animals as reservoir of VRE and the public health significance of infections caused by Enterococcus spp.
    Matched MeSH terms: Peptide Synthases/genetics*
  4. Zainudin NA, Condon B, De Bruyne L, Van Poucke C, Bi Q, Li W, et al.
    Mol Plant Microbe Interact, 2015 Oct;28(10):1130-41.
    PMID: 26168137 DOI: 10.1094/MPMI-03-15-0068-R
    The Sfp-type 4'-phosphopantetheinyl transferase Ppt1 is required for activation of nonribosomal peptide synthetases, including α-aminoadipate reductase (AAR) for lysine biosynthesis and polyketide synthases, enzymes that biosynthesize peptide and polyketide secondary metabolites, respectively. Deletion of the PPT1 gene, from the maize pathogen Cochliobolus heterostrophus and the rice pathogen Cochliobolus miyabeanus, yielded strains that were significantly reduced in virulence to their hosts. In addition, ppt1 mutants of C. heterostrophus race T and Cochliobolus victoriae were unable to biosynthesize the host-selective toxins (HST) T-toxin and victorin, respectively, as judged by bioassays. Interestingly, ppt1 mutants of C. miyabeanus were shown to produce tenfold higher levels of the sesterterpene-type non-HST ophiobolin A, as compared with the wild-type strain. The ppt1 strains of all species were also reduced in tolerance to oxidative stress and iron depletion; both phenotypes are associated with inability to produce extracellular siderophores biosynthesized by the nonribosomal peptide synthetase Nps6. Colony surfaces were hydrophilic, a trait previously associated with absence of C. heterostrophus Nps4. Mutants were decreased in asexual sporulation and C. heterostrophus strains were female-sterile in sexual crosses; the latter phenotype was observed previously with mutants lacking Nps2, which produces an intracellular siderophore. As expected, mutants were albino, since they cannot produce the polyketide melanin and were auxotrophic for lysine because they lack an AAR.
    Matched MeSH terms: Peptide Synthases/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links