Very short-lived brominated substances (VSLBr) are an important source of stratospheric bromine, an effective ozone destruction catalyst. However, the accurate estimation of the organic and inorganic partitioning of bromine and the input to the stratosphere remains uncertain. Here, we report near-tropopause measurements of organic brominated substances found over the tropical Pacific during the NASA Airborne Tropical Tropopause Experiment campaigns. We combine aircraft observations and a chemistry-climate model to quantify the total bromine loading injected to the stratosphere. Surprisingly, despite differences in vertical transport between the Eastern and Western Pacific, VSLBr (organic + inorganic) contribute approximately similar amounts of bromine [∼6 (4-9) parts per trillion] [corrected] to the stratospheric input at the tropical tropopause. These levels of bromine cause substantial ozone depletion in the lower stratosphere, and any increases in future abundances (e.g., as a result of aquaculture) will lead to larger depletions.
HCFCs, in addition to destroying the ozone layer, have been recognized as a contributing factor that increases global warming. It is widely used as working fluid in window air-conditioning system, where capillary tube serves as an expansion device. Literature reports have shown that no single refrigerant can solve the problem of ozone layer depletion and global warming. Refrigerant HC290/HC600a/HFC407C mixture, an eco-friendly refrigerant, has been recognized as an alternative to HCFC22. The objective of this study is to, for cost effectiveness, develop an empirical correlation to predict the refrigerant HC290/ HC600a/HFC407C mixture mass flow rate using statistical experimental design approach. A review of relevant literature shows that refrigerant’s mass flow rate depends on condensing temperature, degree of subcooling, inner diameter and length of capillary tube. The relationship between the mass flow rate and the four independent variables was established as an empirical mathematical correlation using central composite design (CCD), a response surface methodology (RSM). This empirical correlation was examined using analysis of variance (ANOVA) of 5% level of significance. The results of these analysis showed that the correlation fitted well with the experimental data yielding an average and standard deviation of 1.05% and 2.62%, respectively. The validity of the present correlation was further assessed by comparing it with published empirical correlation in literature and the result showed that the present correlation is consistent.