Displaying all 2 publications

Abstract:
Sort:
  1. Mulimani PS
    Am J Orthod Dentofacial Orthop, 2017 Jul;152(1):1-8.
    PMID: 28651753 DOI: 10.1016/j.ajodo.2017.03.020
    Organized evidence-based practice is said to have started in the medical field in the late 20th century. Its principles and usage eventually spread to other health sciences, including orthodontics. Although the conceptual foundations and basic tenets of evidence-based orthodontics are based on the classical approach of testing medical interventions, differences unravel as we encounter the ground realities in orthodontics, which are unique due to the length, complexity, and diversity involved in orthodontic treatment and research. How has this led to the evolution of evidence-based orthodontics and changes in its applications? Is it being translated to better clinical answers, treatment strategies, patient satisfaction, and information for orthodontists? What more needs to be done, considering the rapidly changing orthodontic scenario? This article aims to explore these questions to evaluate how evidence-based orthodontics has played itself out so far, so that it can continue to grow strong and stand up to the challenges of 21st century orthodontics.
    Matched MeSH terms: Orthodontics/methods
  2. Mosleh MA, Baba MS, Malek S, Almaktari RA
    BMC Bioinformatics, 2016 Dec 22;17(Suppl 19):499.
    PMID: 28155649 DOI: 10.1186/s12859-016-1370-5
    BACKGROUND: Cephalometric analysis and measurements of skull parameters using X-Ray images plays an important role in predicating and monitoring orthodontic treatment. Manual analysis and measurements of cephalometric is considered tedious, time consuming, and subjected to human errors. Several cephalometric systems have been developed to automate the cephalometric procedure; however, no clear insights have been reported about reliability, performance, and usability of those systems. This study utilizes some techniques to evaluate reliability, performance, and usability metric using SUS methods of the developed cephalometric system which has not been reported in previous studies.

    METHODS: In this study a novel system named Ceph-X is developed to computerize the manual tasks of orthodontics during cephalometric measurements. Ceph-X is developed by using image processing techniques with three main models: enhancements X-ray image model, locating landmark model, and computation model. Ceph-X was then evaluated by using X-ray images of 30 subjects (male and female) obtained from University of Malaya hospital. Three orthodontics specialists were involved in the evaluation of accuracy to avoid intra examiner error, and performance for Ceph-X, and 20 orthodontics specialists were involved in the evaluation of the usability, and user satisfaction for Ceph-X by using the SUS approach.

    RESULTS: Statistical analysis for the comparison between the manual and automatic cephalometric approaches showed that Ceph-X achieved a great accuracy approximately 96.6%, with an acceptable errors variation approximately less than 0.5 mm, and 1°. Results showed that Ceph-X increased the specialist performance, and minimized the processing time to obtain cephalometric measurements of human skull. Furthermore, SUS analysis approach showed that Ceph-X has an excellent usability user's feedback.

    CONCLUSIONS: The Ceph-X has proved its reliability, performance, and usability to be used by orthodontists for the analysis, diagnosis, and treatment of cephalometric.

    Matched MeSH terms: Orthodontics/methods*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links