In Malaysia, rivers are the main source of public water supplies. This study was conducted from 2002 to 2003 to determine the levels of selected organochlorine and organophosphate pesticides in the Selangor River in Malaysia. Surface water samples have been collected seasonally from nine sites along the river. A liquid-liquid extraction followed by gas chromatography-mass spectrometry technique was used to determine the trace levels of these pesticide residues. The organochlorine pesticides detected were lindane, heptachlor, endosulfan, dieldrin, endosulfan sulfate, o,p'-DDT, p,p'-DDT, o,p'-DDE and p,p'-DDE whereas for organophosphate pesticides, they were chlorpyrifos and diazinon. At the river upstream where a dam is located for public water supply, incidents of pesticide levels exceeding the European Economic Community Directive of water quality standards have occurred. Furthermore, the wetland ecosystems located at the downstream of the river which houses the fireflies community is being threatened by occasional pesticide levels above EPA limits for freshwater aquatic organisms. The occurrence of these residual pesticides in the Selangor River can be attributed to the intense agriculture and urban activity.
Pesticides are of great concern because of their existence in ecosystems at trace concentrations. Worldwide pesticide use and its ecological impacts (i.e., altered environmental distribution and toxicity of pesticides) have increased over time. Exposure and toxicity studies are vital for reducing the extent of pesticide exposure and risk to the environment and humans. Regional regulatory actions may be less relevant in some regions because the contamination and distribution of pesticides vary across regions and countries. The risk quotient (RQ) method was applied to assess the potential risk of organophosphorus pesticides (OPPs), primarily focusing on riverine ecosystems. Using the available ecotoxicity data, aquatic risks from OPPs (diazinon and chlorpyrifos) in the surface water of the Langat River, Selangor, Malaysia were evaluated based on general (RQm) and worst-case (RQex) scenarios. Since the ecotoxicity of quinalphos has not been well established, quinalphos was excluded from the risk assessment. The calculated RQs indicate medium risk (RQm = 0.17 and RQex = 0.66; 0.1 ≤ RQ 1 (high risk) was observed for both the general and worst cases of chlorpyrifos, but only for the worst cases of diazinon at all sites from downstream to upstream regions. Thus, chlorpyrifos posed a higher risk than diazinon along the Langat River, suggesting that organisms and humans could be exposed to potentially high levels of OPPs.
This review (with 99 refs.) summarizes the progress that has been made in colorimetric (i.e. spectrophotometric) determination of organophosphate pesticides (OPPs) using gold and silver nanoparticles (NPs). Following an introduction into the field, a first large section covers the types and functions of organophosphate pesticides. Methods for colorimetric (spectrophotometric) measurements including RGB techniques are discussed next. A further section covers the characteristic features of gold and silver-based NPs. Syntheses and modifications of metal NPs are covered in section 5. This is followed by overviews on enzyme inhibition-based assays, aptamer-based assays and chemical (non-enzymatic) assays, and a discussion of specific features of colorimetric assays. Several Tables are presented that give an overview on the wealth of methods and materials. A concluding section addresses current challenges and discusses potential future trends and opportunities. Graphical abstractSchematic representation of organophosphate pesticide determinations based on aggregation of nanoparticles (particular silver or gold nanoparticles). This leads to a color change which can be determined visually and monitored by a red shift in the absorption spectrum.