MATERIALS AND METHODS: The SLs that were fermented and further characterized for their biochemical activities. Cytotoxicity study was performed to assess cytostatic properties. A series of in vitro and ex vivo angiogenesis assay was also carried out. The relative fold change in the expression of p53 mRNA by SLs was also studied.
RESULTS: Altogether, the data show that SLs derived from palm oil fermentation process inhibited neovascularization in the ex vivo tissue segments and also the endothelial cell proliferation between 50% and 65% inhibition as a whole. The palm oil derived SLs also caused downregulation of the suppression level of vascular endothelial growth factor and also upregulate the p53 mRNA level. The analytical studies revealed the presence of high amount of phenolic compounds but with relatively weak antioxidant activity. The gas chromatography-mass spectrometry studies revealed abundant amount of palmitic and oleic acid, the latter an established antiangiogenic agent, and the former being proangiogenic.
CONCLUSION: Therefore, it can be concluded from this study that SLs derived from fermented palm oil have potent antiangiogenic activity which may be attributed by its oleic acid component.
SUBJECTS/METHODS: We used a cross-over designed feeding trial in 53 healthy Asian men and women (20-50 years) to test this hypothesis by exchanging 20% energy of palm olein (PO; control) with randomly interesterified PO (IPO) or high oleic acid sunflower oil (HOS). After a 2-week run-in period on PO, participants were fed PO, IPO and HOS for 6 week consecutively in randomly allocated sequences. Fasting (midpoint and endpoint) and postprandial blood at the endpoint following a test meal (3.54 MJ, 14 g protein, 85 g carbohydrate and 50 g fat as PO) were collected for the measurement of C-peptide, insulin, glucose, plasma glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1, lipids and apolipoproteins; pre-specified primary and secondary outcomes were postprandial changes in C-peptide and plasma glucose.
RESULTS: Low density lipoprotein cholesterol was 0.3 mmol/l (95% confidence interval (95% CI)) 0.1, 0.5; P<0.001) lower on HOS than on PO or IPO as predicted, indicating good compliance to the dietary intervention. There were no significant differences (P=0.58) between diets among the 10 male and 31 female completers in the incremental area under the curve (0-2 h) for C-peptide in nmol.120 min/l: GM (95% CI) were PO 220 (196, 245), IPO 212 (190, 235) and HOS 224 (204, 244). Plasma glucose was 8% lower at 2 h on IPO vs PO and HOS (both P<0.05).
CONCLUSION: Palmitic acid in the sn-2 position does not adversely impair insulin secretion and glucose homeostasis.
OBJECTIVE: We investigated the effects of high-protein Malaysian diets prepared with palm olein, coconut oil (CO), or virgin olive oil on plasma homocysteine and selected markers of inflammation and cardiovascular disease (CVD) in healthy adults.
DESIGN: A randomized-crossover intervention with 3 dietary sequences of 5 wk each was conducted in 45 healthy subjects. The 3 test fats, namely palmitic acid (16:0)-rich palm olein (PO), lauric and myristic acid (12:0 + 14:0)-rich CO, and oleic acid (18:1)-rich virgin olive oil (OO), were incorporated at two-thirds of 30% fat calories into high-protein Malaysian diets.
RESULTS: No significant differences were observed in the effects of the 3 diets on plasma total homocysteine (tHcy) and the inflammatory markers TNF-α, IL-1β, IL-6, and IL-8, high-sensitivity C-reactive protein, and interferon-γ. Diets prepared with PO and OO had comparable nonhypercholesterolemic effects; the postprandial total cholesterol for both diets and all fasting lipid indexes for the OO diet were significantly lower (P < 0.05) than for the CO diet. Unlike the PO and OO diets, the CO diet was shown to decrease postprandial lipoprotein(a).
CONCLUSION: Diets that were rich in saturated fatty acids prepared with either PO or CO, and an OO diet that was high in oleic acid, did not alter postprandial or fasting plasma concentrations of tHcy and selected inflammatory markers. This trial was registered at clinicaltrials.gov as NCT00941837.