Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Tan SY, Foo CN, Ng FL, Tan CH, Lim YM
    Gene, 2025 Jan 30;935:149043.
    PMID: 39486662 DOI: 10.1016/j.gene.2024.149043
    Breast cancer remains a significant global health concern, impacting millions of women every year. Maslinic acid (MA), a pentacyclic triterpene has been found to exert promising anticancer effect in various cancers, including breast cancer, yet the underlying mechanisms remain unclear. This study aims to elucidate the anticancer properties of MA via gene expression profiles in breast cancer cells. Cytotoxicity assay results revealed that MCF-7 exerts the highest sensitivity after 72 h of MA treatment followed by T-47D and MDA-MB-231. MCF-7 were then selected for in-depth analysis using the Nanostring nCounter Pancancer Pathway Panel to analyze the differential expression of genes (DEGs). Across three time points (24, 48, and 72 h), 20 significant DEGs were identified, of which 5 were upregulated and 15 were downregulated. In silico analysis indicated that these DEGs were involved in Pathway of Cancer, Focal Adhesion-PI3K-mTOR Signaling Pathway, PI3K-Akt, and Ras Signaling Pathway. The regulation of these DEGs contributes to several cellular activities such as apoptosis, inhibition of cell proliferation, cell cycle and survival, reduction of glycolysis, angiogenesis, and DNA repair. Additionally, the unfolded protein response emerged as a noteworthy biological process in this study. This study unravels the molecular mechanisms underpinning the therapeutic potential of MA against breast cancer.
    Matched MeSH terms: Oleanolic Acid/analogs & derivatives
  2. Anouar el H, Zakaria NS, Alsalme A, Shah SA
    Mini Rev Med Chem, 2015;15(14):1148-58.
    PMID: 26205959
    A natural pentacyclic triterpenoid oleanolic acid 1 and its biotransformed metabolites 2-3 are potential α-glucosidase inhibitors. To elucidate the inhibitory mechanism of compounds 1, 2 and 3 against α-glucosidase, we calculated (i) their electronic and optical properties using DFT and TD-DFT at the B3LYP/6-31G(d) level in gas and IEF-PCM solvent; and (ii) their binding energies to α-glucosidase via docking study. DFT results showed that the α-glucosidase inhibtion is mainly depend on the polarity parameters of the studied compounds. Docking results revealed that the activity increased with binding energies (i.e. the stability of ligand-receptor complex). The specroscopic data of oleanolic acid 1 and its metabolites 2 and 3 are well predicetd for 13C NMR chemical shifts (R2=99%) and 1H NMR chemical shifts (R2=90%); and for (ii) UV/vis spectra. The assignments and interpretation of NMR chemical shifts and bathochromic shift of λMAX absorption bands are discussed.
    Matched MeSH terms: Oleanolic Acid/metabolism*; Oleanolic Acid/pharmacology*; Oleanolic Acid/chemistry
  3. Tan S, Yuen KH, Chan KL
    Planta Med, 2002 Apr;68(4):355-8.
    PMID: 11988862 DOI: 10.1055/s-2002-26751
    A new and simple HPLC method using fluorescence detection was developed to determine 9-methoxycanthin-6-one, an active compound of Eurycoma longifolia Jack in rat and human plasma. The method entailed direct injection of plasma sample after deproteinization using acetonitrile. The mobile phase comprised acetonitrile and distilled water (55 : 45, v/v). Analysis was run at a flow rate of 1.0 ml/min with the detector operating at an excitation wavelength of 371 nm and emission wavelength of 504 nm. The method was specific and sensitive with a detection limit of 0.6 ng/ml and a quantification limit of approximately 1.6 ng/ml. The method was applied in a pilot pharmacokinetic/bioavailability study of the compound in rats. Less than 1 % of the compound was found to be absorbed orally.
    Matched MeSH terms: Oleanolic Acid/analogs & derivatives; Oleanolic Acid/blood; Oleanolic Acid/pharmacokinetics*
  4. Yeong LT, Abdul Hamid R, Saiful Yazan L, Khaza'ai H, Awang Hamsin DE
    Nat Prod Res, 2014;28(22):2026-30.
    PMID: 24836304 DOI: 10.1080/14786419.2014.917415
    An isomeric mixture of α,β-amyrin (triterpene) and 2-methoxy-6-undecyl-1,4-benzoquinone (quinone) isolated from the Ardisia crispa root hexane (ACRH) extract was reported to possess anti-inflammatory properties in vivo. Considering the close association between inflammation and cancer, on top of the lack of antitumour study on those compounds, this study aimed to determine the potential of both compounds against tumour promotion in vitro, either as single agent or in combination. Triterpene and quinone compounds, as well as triterpene-quinone fraction (TQF) and ACRH were subjected to inhibition of Epstein-Barr virus-early antigen (EBV-EA) activation assay for that purpose. Compared with curcumin (positive control), inhibition against EBV-EA activation occurred in the order: ACRH>TQF ≥ curcumin>α,β-amyrin ≥ 2-methoxy-6-undecyl-1,4-benzoquinone. These findings reported, for the first time, the antitumor-promoting effect of α,β-amyrin and 2-methoxy-6-undecyl-1,4-benzoquinone from the roots of A. crispa, which was enhanced when both compounds act in synergy.
    Matched MeSH terms: Oleanolic Acid/analogs & derivatives; Oleanolic Acid/isolation & purification; Oleanolic Acid/pharmacology; Oleanolic Acid/chemistry
  5. Grace-Lynn C, Darah I, Chen Y, Latha LY, Jothy SL, Sasidharan S
    Molecules, 2012 Sep 19;17(9):11185-98.
    PMID: 22992785
    Lantadenes are pentacyclic triterpenoids present in the leaves of the plant Lantana camara. In the present study, in vitro antioxidant activity and free radical scavenging capacity of lantadene A was evaluated using established in vitro models such as ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picryl-hydrazyl (DPPH•), hydroxyl radical (OH•), nitric oxide radical (NO•), superoxide anion scavenging activities and ferrous ion chelating assay. Interestingly, lantadene A showed considerable in vitro antioxidant, free radical scavenging capacity activities in a dose dependant manner when compared with the standard antioxidant in nitric oxide scavenging, superoxide anion radical scavenging and ferrous ion chelating assay. These findings show that the lantadene A possesses antioxidant activity with different mechanism of actions towards the different free radicals tested. Since lantadene A is a very popular drug in modern medicine, it is a promising candidate for use as an antioxidant and hepatoprotective agent.
    Matched MeSH terms: Oleanolic Acid/analogs & derivatives*; Oleanolic Acid/pharmacology; Oleanolic Acid/toxicity; Oleanolic Acid/chemistry
  6. Suthar SK, Boon HL, Sharma M
    Eur J Med Chem, 2014 Mar 3;74:135-44.
    PMID: 24457265 DOI: 10.1016/j.ejmech.2013.12.052
    The C-3, C-17 and C-22 congeners of pentacyclic triterpenoids reduced lantadene A (3), B (4) and 22β-hydroxyoleanolic acid (5) were synthesized and were tested in vitro for their NF-κB and IKKβ inhibitory potencies and cytotoxicity against A549 lung cancer cells. The lead congeners 12 and 13 showed IC50 of 0.56 and 0.42 μmol, respectively against TNF-α induced activation of NF-κB. The congeners 12 and 13 exhibited inhibition of IKKβ in a single-digit micromolar dose and at the same time, 12 and 13 showed marked cytotoxicity against A549 lung cancer cells with IC50 of 0.12 and 0.08 μmol, respectively. The lead ester congeners were stable in the acidic pH, while hydrolyzed readily in the human blood plasma to release the active parent moieties.
    Matched MeSH terms: Oleanolic Acid/pharmacology*; Oleanolic Acid/chemistry
  7. Al Muqarrabun LM, Ahmat N, Aris SR, Norizan N, Shamsulrijal N, Yusof FZ, et al.
    Nat Prod Res, 2014;28(13):1003-9.
    PMID: 24697194 DOI: 10.1080/14786419.2014.903396
    A new triterpene, malaytaraxerate (1), and four known compounds, taraxerol (2), taraxerone (3), docosyl isoferulate (4) and docosanoic acid 2',3'-dihydroxypropyl ester (5), were isolated from the acetone extract of Sapium baccatum stem bark. The structures of the isolated compounds were determined using several spectroscopic methods, including UV-Vis, FT-IR, 1D and 2D NMR, and mass spectrometry. Major isolated compounds were assayed for cytotoxicity. The chemotaxonomic significance of this plant was also studied.
    Matched MeSH terms: Oleanolic Acid/analogs & derivatives; Oleanolic Acid/isolation & purification; Oleanolic Acid/chemistry
  8. Grace-Lynn C, Chen Y, Latha LY, Kanwar JR, Jothy SL, Vijayarathna S, et al.
    Molecules, 2012 Nov 23;17(12):13937-47.
    PMID: 23178309 DOI: 10.3390/molecules171213937
    The aim of the present study was to evaluate the hepatoprotective activity of lantadene A against acetaminophen-induced liver toxicity in mice was studied. Activity was measured by monitoring the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and bilirubin, along with histo-pathological analysis. Silymarin was used as positive control. A bimodal pattern of behavioural toxicity was exhibited by the lantadene A-treated group at the beginning of the treatment. However, treatment with lantadene A and silymarin resulted in an increase in the liver weight compared with the acetaminophen treated group. The results of the acetaminophen-induced liver toxicity experiments showed that mice treated with lantadene A (500 mg/kg) showed a significant decrease in the activity of ALT, AST and ALP and the level of bilirubin, which were all elevated in the acetaminophen treated group (p < 0.05). Histological studies supported the biochemical findings and a maximum improvement in the histoarchitecture was seen. The lantadene A-treated group showed remarkable protective effects against histopathological alterations, with comparable results to the silymarin treated group. The current study confirmed the hepatoprotective effects of lantadene A against the model hepatotoxicant acetaminophen, which is likely related to its potent antioxidative activity.
    Matched MeSH terms: Oleanolic Acid/administration & dosage; Oleanolic Acid/analogs & derivatives*; Oleanolic Acid/chemistry
  9. Taher M, Salleh WMNHW, Alkhamaiseh SI, Ahmad F, Rezali MF, Susanti D, et al.
    Z Naturforsch C J Biosci, 2021 Jan 27;76(1-2):87-91.
    PMID: 32931451 DOI: 10.1515/znc-2020-0089
    A phytochemical investigation of the stem bark of Calophyllum canum resulted in the isolation of a new xanthone dimer identified as biscaloxanthone (1), together with four compounds; trapezifoliaxanthone (2), trapezifolixanthone A (3), taraxerone (4) and taraxerol (5). The structures of these compounds were determined via spectroscopic methods of IR, UV, MS and NMR (1D and 2D). The cytotoxicity of compounds 1-3 were screened against A549, MCF-7, C33A and 3T3L1 cell lines, wherein weak cytotoxic activities were observed (IC50 > 50 μm).
    Matched MeSH terms: Oleanolic Acid
  10. Chua LK, Lim CL, Ling APK, Chye SM, Koh RY
    Plant Foods Hum Nutr, 2019 Mar;74(1):18-27.
    PMID: 30535971 DOI: 10.1007/s11130-018-0704-z
    Cancer is a preventable and treatable disease, however, the incidence rates are on the rise. Classical treatment modalities for cancer include surgery, radiotherapy and chemotherapy. However, these are associated with detrimental side effects such as nausea and emesis. Therefore, researchers currently vest interest in complementary and alternative medicines for cancer treatment and prevention. Plants such as Syzygium sp. are a common basis of complementary medicines due to its abundance of bioactive phytochemicals. Numerous natural compounds derived from Syzygium sp., such as phenolics, oleanolic acids, and betulinic acids, and dimethyl cardamonins, were reported to have anticancer effects. Many possess the ability to inhibit cell proliferation and induce apoptosis. In this review, we discuss the vast potential Syzygium sp. harbours as a source of anticancer natural compounds due to its abundance, easy acceptability, affordability and safety for regular consumption.
    Matched MeSH terms: Oleanolic Acid/pharmacology
  11. Chung PY, Chung LY, Navaratnam P
    Fitoterapia, 2014 Apr;94:48-54.
    PMID: 24508863 DOI: 10.1016/j.fitote.2014.01.026
    The evolution of antibiotic resistance in Staphylococcus aureus showed that there is no long-lasting remedy against this pathogen. The limited number of antibacterial classes and the common occurrence of cross-resistance within and between classes reinforce the urgent need to discover new compounds targeting novel cellular functions not yet targeted by currently used drugs. One of the experimental approaches used to discover novel antibacterials and their in vitro targets is natural product screening. Three known pentacyclic triterpenoids were isolated for the first time from the bark of Callicarpa farinosa Roxb. (Verbenaceae) and identified as α-amyrin [3β-hydroxy-urs-12-en-3-ol], betulinic acid [3β-hydroxy-20(29)-lupaene-28-oic acid], and betulinaldehyde [3β-hydroxy-20(29)-lupen-28-al]. These compounds exhibited antimicrobial activities against reference and clinical strains of methicillin-resistant (MRSA) and methicillin-sensitive S. aureus (MSSA), with minimum inhibitory concentration (MIC) ranging from 2 to 512 μg/mL. From the genome-wide transcriptomic analysis to elucidate the antimicrobial effects of these compounds, multiple novel cellular targets in cell division, two-component system, ABC transporters, fatty acid biosynthesis, peptidoglycan biosynthesis, aminoacyl-tRNA synthetases, ribosomes and β-lactam resistance pathways are affected, resulting in destabilization of the bacterial cell membrane, halt in protein synthesis, and inhibition of cell growth that eventually lead to cell death. The novel targets in these essential pathways could be further explored in the development of therapeutic compounds for the treatment of S. aureus infections and help mitigate resistance development due to target alterations.
    Matched MeSH terms: Oleanolic Acid/analogs & derivatives; Oleanolic Acid/isolation & purification; Oleanolic Acid/pharmacology; Oleanolic Acid/chemistry
  12. Monika, Sharma A, Suthar SK, Aggarwal V, Lee HB, Sharma M
    Bioorg Med Chem Lett, 2014 Aug 15;24(16):3814-8.
    PMID: 25027934 DOI: 10.1016/j.bmcl.2014.06.068
    The new series of pentacyclic triterpenoids reduced lantadene A (3), B (4), and 22β-hydroxy-3-oxo-olean-12-en-28-oic acid (5) analogs were synthesized and tested in vitro for their NF-κB and IKKβ inhibitory potencies and cytotoxicity against A549 lung cancer cells. The lead analog (11) showed sub-micromolar activity against TNF-α induced activation of NF-κB and exhibited inhibition of IKKβ in a single-digit micromolar dose. At the same time, 11 showed promising cytotoxicity against A549 lung cancer cells with IC50 of 0.98 μM. The Western blot analysis further showed that the suppression of NF-κB activity by the lead analog 11 was due to the inhibition of IκBα degradation, a natural inhibitor of NF-κB. The physicochemical evaluation demonstrated that the lead analog 11 was stable in the simulated gastric fluid of pH 2, while hydrolyzed at a relatively higher rate in the human blood plasma to release the active parent moieties. Molecular docking analysis showed that 11 was hydrogen bonded with the Arg-31 and Gln-110 residues of the IKKβ.
    Matched MeSH terms: Oleanolic Acid/analogs & derivatives*; Oleanolic Acid/chemical synthesis; Oleanolic Acid/pharmacology; Oleanolic Acid/chemistry
  13. Muhammad A, Sirat HM
    Nat Prod Commun, 2013 Oct;8(10):1435-7.
    PMID: 24354195
    The stem bark extracts of Bauhinia rufescens Lam. (Fabaceae) yielded 6-methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin, alpha-amyrin acetate, beta-sitosterol 3-O-beta-D-xylopyranoside, 4-(2'-Hydroxyphenethyl)-5-methoxy-2-methylphenol, menisdaurin and sequoyitol. Their structures were determined using spectroscopic methods and comparisons with the literature data. For the antimicrobial assay Gram-positive and Gram-negative bacterial and fungal strains were tested, while the tyrosinase inhibition assay utilized L-DOPA as a substrate for the tyrosinase enzyme. 6-Methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin, a-amyrin acetate, beta-sitosterol 3-O-D-xylopyranoside, menisdaurin and sequoyitol showed weak to moderate activities with minimum inhibition concentration (MIC) values in the range of 112.5-900 microg/mL against all bacterial strains, while the MIC values for the fungal strains were in the range of 28.1-450 microg/mL. In the tyrosinase inhibition assay, a-amyrin acetate was found to be moderately active against tyrosinase with an inhibition of 62% at 0.1 mg/mL. This activity was lower than that of the positive control, kojic acid (85%).
    Matched MeSH terms: Oleanolic Acid/analogs & derivatives; Oleanolic Acid/isolation & purification
  14. Chung PY, Chung LY, Navaratnam P
    PLoS One, 2013;8(2):e56687.
    PMID: 23437212 DOI: 10.1371/journal.pone.0056687
    Staphylococcus aureus is an important human pathogen in both hospital and the community that has demonstrated resistance to all currently available antibiotics over the last two decades. Multidrug-resistant isolates of methicillin-resistant S. aureus (MRSA) exhibiting decreased susceptibilities to glycopeptides has also emerged, representing a crucial challenge for antimicrobial therapy and infection control. The availability of complete whole-genome nucleotide sequence data of various strains of S. aureus presents an opportunity to explore novel compounds and their targets to address the challenges presented by antimicrobial drug resistance in this organism. Study compounds α-amyrin [3β-hydroxy-urs-12-en-3-ol (AM)], betulinic acid [3β-hydroxy-20(29)-lupaene-28-oic acid (BA)] and betulinaldehyde [3β-hydroxy-20(29)-lupen-28-al (BE)] belong to pentacyclic triterpenoids and were reported to exhibit antimicrobial activities against bacteria and fungi, including S. aureus. The MIC values of these compounds against a reference strain of methicillin-resistant S. aureus (MRSA) (ATCC 43300) ranged from 64 µg/ml to 512 µg/ml. However, the response mechanisms of S. aureus to these compounds are still poorly understood. The transcription profile of reference strain of MRSA treated with sub-inhibitory concentrations of the three compounds was determined using Affymetrix GeneChips. The findings showed that these compounds regulate multiple desirable targets in cell division, two-component system, ABC transporters, fatty acid biosynthesis, peptidoglycan biosynthesis, aminoacyl-tRNA synthetase, ribosome and β-lactam resistance pathways which could be further explored in the development of therapeutic agents for the treatment of S. aureus infections.
    Matched MeSH terms: Oleanolic Acid/administration & dosage; Oleanolic Acid/analogs & derivatives*
  15. Shamsee ZR, Al-Saffar AZ, Al-Shanon AF, Al-Obaidi JR
    Mol Biol Rep, 2019 Feb;46(1):381-390.
    PMID: 30426385 DOI: 10.1007/s11033-018-4482-3
    Lantana camara is an important medicinal plant that contains many active compounds, including pentacyclic triterpenoids, with numerous biological activities. The present study was conducted to evaluate the anti-oxidant, anti-tumour, and cell cycle arrest properties of chemical compounds extracted from L. camara leaves. Four compounds were identified after subjecting the plant methanolic extract to LC-MS/MS analysis: lantadene A, lantadene B, icterogenin, and lantadene C. Potential antioxidant activity was examined using 2, 2-diphenyl-1-picrylhydrazyl and compared with vitamin C as a control. Lantadene A and B were confirmed to possess the highest scavenging activity, while icterogenin and lantadene C exhibited a lesser antioxidant effect. All extracted compounds exerted a dose-dependent reduction in MCF-7 cell viability; however, lantadene B showed the highest anti-cancer activity, with an IC50 of 112.2 μg mL-1, and was therefore used in subsequent experiments. The results also confirmed the significant release of caspase 9 in a dose-dependent pattern following treatment of MCF-7 cells with a range of lantadene B concentrations. Lantadene B was found to induce MCF-7 cell cycle arrest in G1, blocking the G1/S transition with a maximum significant (p ≤ 0.01) cell count of 80.35% at 25 µg mL-1. No significant changes were observed in S phase, but a decrease in the MCF-7 population was exhibited in G2/M phase.
    Matched MeSH terms: Oleanolic Acid/analogs & derivatives; Oleanolic Acid/isolation & purification
  16. Rothan HA, Zhong Y, Sanborn MA, Teoh TC, Ruan J, Yusof R, et al.
    Antiviral Res, 2019 11;171:104590.
    PMID: 31421166 DOI: 10.1016/j.antiviral.2019.104590
    Two major flaviviruses, dengue virus (DENV) and Zika virus (ZIKV), cause severe health and economic burdens worldwide. Recently, genome-wide screenings have uncovered the importance of regulators of the Hrd1 ubiquitin ligase-mediated endoplasmic reticulum (ER)-associated degradation (ERAD) pathway for flavivirus replication in host cells. Here we report the identification of the compound Bardoxolone methyl (CDDO-me) as a potent inhibitor of the Hrd1 ubiquitin ligase-mediated ERAD, which possesses a broad-spectrum activity against both DENV and ZIKV. Cellular thermal shift assay (CETSA) suggested that CDDO-me binds to grp94, a key component of the Hrd1 pathway, at a low nanomolar concentration, whereas interaction was not detected with its paralog Hsp90. CDDO-me and the grp94 inhibitor PU-WS13 substantially suppressed DENV2 replication and the cytopathic effects caused by DENV and ZIKV infection. The antiviral activities of both compounds were demonstrated for all four DENV serotypes and four ZIKV strains in multiple human cell lines. This study defines grp94 as a crucial host factor for flavivirus replication and identified CDDO-me as a potent small molecule inhibitor of flavivirus infection. Inhibition of grp94 may contribute to the antiviral activity of CDDO-me. Further investigation of grp94 inhibitors may lead to a new class of broad-spectrum anti-flaviviral medications.
    Matched MeSH terms: Oleanolic Acid/analogs & derivatives*; Oleanolic Acid/pharmacology
  17. Chung PY
    Phytomedicine, 2020 Jul 15;73:152933.
    PMID: 31103429 DOI: 10.1016/j.phymed.2019.152933
    BACKGROUND: Staphylococcus aureus is an important pathogen both in community-acquired and healthcare-associated infections, and has successfully evolved numerous strategies for resisting the action to practically all antibiotics. Resistance to methicillin is now widely described in the community setting (CMRSA), thus the development of new drugs or alternative therapies is urgently necessary. Plants and their secondary metabolites have been a major alternative source in providing structurally diverse bioactive compounds as potential therapeutic agents for the treatment of bacterial infections. One of the classes of natural secondary metabolites from plants with the most bioactive compounds are the triterpenoids, which comprises structurally diverse organic compounds. In nature, triterpenoids are often found as tetra- or penta-cyclic structures.

    AIM: This review highlights the anti-staphylococcal activities of pentacyclic triterpenoids, particularly α-amyrin (AM), betulinic acid (BA) and betulinaldehyde (BE). These compounds are based on a 30-carbon skeleton comprising five six-membered rings (ursanes and lanostanes) or four six-membered rings and one five-membered ring (lupanes and hopanes).

    METHODS: Electronic databases such as ScienceDirect, PubMed and Scopus were used to search scientific contributions until March 2018, using relevant keywords. Literature focusing on the antimicrobial and antibiofilms of effects of pentacyclic triterpenoids on S. aureus were identified and summarized.

    RESULTS: Pentacyclic triterpenoids can be divided into three representative classes, namely ursane, lupane and oleananes. This class of compounds have been shown to exhibit analgesic, immunomodulatory, anti-inflammatory, anticancer, antioxidant, antifungal and antibacterial activities. In studies of the antimicrobial activities and targets of AM, BA and BE in sensitive and multidrug-resistant S. aureus, these compounds acted synergistically and have different targets from the conventional antibiotics.

    CONCLUSION: The inhibitory mechanisms of S. aureus in novel targets and pathways should stimulate further researches to develop AM, BA and BE as therapeutic agents for infections caused by S. aureus. Continued efforts to identify and exploit synergistic combinations by the three compounds and peptidoglycan inhibitors, are also necessary as alternative treatment options for S. aureus infections.

    Matched MeSH terms: Oleanolic Acid/analogs & derivatives; Oleanolic Acid/pharmacology
  18. Ee, G.C.L., Cheow, Y.L.
    MyJurnal
    Detail chemical studies on Carcinia maingayi have yielded one xanthone, 1,3,7-trihydroxy-2-(3-methylbut-2-enyl)-xanthone, one benzophenone, isoxanthochymol, one benzoic acid derivative 3,4-dihydroxy-methylbenzoate and two triterpenoids, stigmasterol and sitosterol. Meanwhile, investigations on Carcinia parvifolia have afforded one triterpenoid, a-amyrin and two xanthones, cowanin and rubraxanthone. Their structures were derived based on spectroscopic evidence, mainly ID and 2D NMR spectroscopy. Acetylation reaction was carried out on rubraxanthone to yield triacetate rubraxanthone. It was found that the pure rubraxanthone was strongly active against the larvae of Aedes aegypti with LC50 value of 15.49 {lg/ ml and HL-60 cells line with an IC50 value of 7.5 {lg/ ml.
    Matched MeSH terms: Oleanolic Acid
  19. Hanafi MMM, Afzan A, Yaakob H, Aziz R, Sarmidi MR, Wolfender JL, et al.
    Front Pharmacol, 2017;8:895.
    PMID: 29326585 DOI: 10.3389/fphar.2017.00895
    This study aims to evaluate the in vitro cytotoxic and anti-migratory effects of Ficus deltoidea L. on prostate cancer cells, identify the active compound/s and characterize their mechanism of actions. Two farmed varieties were studied, var. angustifolia (FD1) and var. deltoidea (FD2). Their crude methanolic extracts were partitioned into n-hexane (FD1h, FD2h) chloroform (FD1c, FD2c) and aqueous extracts (FD1a, FD2a). Antiproliferative fractions (IC50 < 30 μg/mL, SRB staining of PC3 cells) were further fractionated. Active compound/s were dereplicated using spectroscopic methods. In vitro mechanistic studies on PC3 and/or LNCaP cells included: annexin V-FITC staining, MMP depolarization measurements, activity of caspases 3 and 7, nuclear DNA fragmentation and cell cycle analysis, modulation of Bax, Bcl-2, Smac/Diablo, and Alox-5 mRNA gene expression by RT-PCR. Effects of cytotoxic fractions on 2D migration and 3D invasion were tested by exclusion assays and modified Boyden chamber, respectively. Their mechanisms of action on these tests were further studied by measuring the expression VEGF-A, CXCR4, and CXCL12 in PC3 cells by RT-PCR. FD1c and FD2c extracts induced cell death (P < 0.05) via apoptosis as evidenced by nuclear DNA fragmentation. This was accompanied by an increase in MMP depolarization (P < 0.05), activation of caspases 3 and 7 (P < 0.05) in both PC3 and LNCaP cell lines. All active plant extracts up-regulated Bax and Smac/DIABLO, down-regulated Bcl-2 (P < 0.05). Both FD1c and FD2c were not cytotoxic against normal human fibroblast cells (HDFa) at the tested concentrations. Both plant extracts inhibited both migration and invasion of PC3 cells (P < 0.05). These effects were accompanied by down-regulation of both VEGF-A and CXCL-12 gene expressions (P < 0.001). LC-MS dereplication using taxonomy filters and molecular networking databases identified isovitexin in FD1c; and oleanolic acid, moretenol, betulin, lupenone, and lupeol in FD2c. In conclusion, FD1c and FD2c were able to overcome three main hallmarks of cancer in PC3 cells: (1) apoptosis by activating of the intrinsic pathway, (2) inhibition of both migration and invasion by modulating the CXCL12-CXCR4 axis, and (3) inhibiting angiogenesis by modulating VEGF-A expression. Moreover, isovitexin is here reported for the first time as an antiproliferative principle (IC50 = 43 μg/mL, SRB staining of PC3 cells).
    Matched MeSH terms: Oleanolic Acid
  20. Mooi LY, Yew WT, Hsum YW, Soo KK, Hoon LS, Chieng YC
    Asian Pac J Cancer Prev, 2012;13(4):1177-82.
    PMID: 22799301
    Protein kinase C (PKC) has been implicated in carcinogenesis and displays variable expression profiles during cancer progression. Studies of dietary phytochemicals on cancer signalling pathway regulation have been conducted to search for potent signalling regulatory agents. The present study was designed to evaluate any suppressive effect of maslinic acid on PKC expression in human B-lymphoblastoid cells (Raji cells), and to identify the PKC isoforms expressed. Effects of maslinic acid on PKC activity were determined using a PepTag assay for non-radioactive detection of PKC. The highest expression in Raji cells was obtained at 20 nM PMA induced for 6 hours. Suppressive effects of maslinic acid were compared with those of four PKC inhibitors (H- 7, rottlerin, sphingosine, staurosporine) and two triterpenes (oleanolic acid and ursolic acid). The IC₅₀ values achieved for maslinic acid, staurosporine, H-7, sphingosine, rottlerin, ursolic acid and oleanolic acid were 11.52, 0.011, 0.767, 2.45, 5.46, 27.93 and 39.29 μM, respectively. Four PKC isoforms, PKC βI, βII, δ, and ζ, were identified in Raji cells via western blotting. Maslinic acid suppressed the expression of PKC βI, δ, and ζ in a concentration-dependent manner. These preliminary results suggest promising suppressive effects of maslinic acid on PKC activity in Raji cells. Maslinic acid could be a potent cancer chemopreventive agent that may be involved in regulating many downstream signalling pathways that are activated through PKC receptors.
    Matched MeSH terms: Oleanolic Acid/pharmacology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links