IMPORTANCE: Noroviruses are a significant cause of viral gastroenteritis, and it is important to understand the mechanism of norovirus RNA synthesis. Here we describe the identification of an RNA stem-loop structure that functions as the core of the norovirus subgenomic RNA promoter in cells and in vitro. This work provides new insights into the molecular mechanisms of norovirus RNA synthesis and the sequences that determine the recognition of viral RNA by the RNA-dependent RNA polymerase.
METHODOLOGY: A descriptive study was conducted to describe the epidemiological characteristics of the outbreak. Data on demographic details, onset of abdominal symptoms, food intake history and contact with ill person three days prior to illness were obtained.
RESULTS: Twelve fresh stool and 14 food samples were tested for NoV and enteric pathogens, respectively. Out of 745 students, 42 (5.6%) were infected during this outbreak. Predominant clinical features were diarrhea (76.1%), vomiting (71.4%) and abdominal pain (67%). Eight (67%) stool samples and six (43.9%)food samples were positive for NoV and total coliforms, respectively. The dissemination of the disease was due to poor hygiene practices among students. Quarantine was imposed until the last case on September 28, 2016. The outbreak was declared over on September 30, 2016.
CONCLUSIONS: A NoV outbreak was determined first time in Malaysia. Environmental assessment showed poor hygienic conditions in the school's kitchen. The number of infected students increased considerably despite the implementation of preventive and control measures. Quarantine was effective to stop the outbreak which is characteristics of NoV outbreak.
METHODS: From June 2013 through May 2014, diarrheal stool samples were collected at one national referral hospital in Thimphu, two regional referral hospitals in the eastern and central regions, and one general hospital in the western region of Bhutan. NoV was detected by reverse transcription-polymerase chain reaction (RT-PCR), by amplifying the capsid gene. The RT-PCR results were confirmed by nucleotide sequencing of the amplicons.
RESULTS: The proportion of NoV-positive stool samples was 23.6% (147/623), of which 76.9% were NoV GII and the remainders were NoV GI. The median age of infected children was 15.5 months, with a fairly balanced female: male ratio. NoV GII was most prevalent in the colder months (late November-mid April) and NoV GI had the highest prevalence in the summer (mid April-late September). Nucleotide sequencing was successful in 99 samples of GII strains. The most common genotypes were GII.3 (42.6%), GII.4 Sydney 2012 (15.8%), and GII.4 unassigned (11.9%). No GII.21 was found in any child in the present study. Phylogenetic analysis showed that GII.3 strains in the present study belonged to an independent cluster in lineage B. These strains shared an ancestor with those from different countries and Bhutanese strains circulating during 2010.
CONCLUSION: NoV remains an important cause of diarrhea among Bhutanese children. Genotype GII.3 from a single ancestor strain has spread, replacing the previously circulating GII.21. Current NoV genotypes are similar to the strains circulating worldwide but are primarily related to those in neighboring countries. NoV GII is prevalent during the cold season, while GI is prevalent during the summer. To develop a NoV infection control policy, further studies are needed.
Methods: The NanoLuc™ Luciferase reporter protein was engineered to be expressed as a fusion protein for MNV-1 minor capsid protein, VP2. The foot-and-mouth disease virus 2A (FMDV2A) sequence was inserted between the 3'end of the reporter gene and the VP2 start sequence to allow co-translational 'cleavage' of fusion proteins during intracellular transcript expression. Amplification of the fusion gene was performed using a series of standard and overlapping polymerase chain reactions. The resulting amplicon was then cloned into three readily available backbones of MNV-1 cDNA clones.
Results: Restriction enzyme analysis indicated that the NanoLucTM Luciferase gene was successfully inserted into the parental MNV-1 cDNA clone. The insertion was further confirmed by using DNA sequencing.
Conclusion: NanoLuc™ Luciferase-tagged MNV-1 cDNA clones were successfully engineered. Such clones can be exploited to develop robust experimental assays for in vitro assessments of viral RNA replication.