The known accumulation of the hepatotoxin indospicine in tissues of camels and cattle grazing Indigofera pasture plants is unusual in that free amino acids would normally be expected to be degraded during the fermentation processes in these foregut fermenters. In this study, in vitro experiments were carried out to examine the degradability of indospicine of Indigofera spicata by camel and cattle foregut microbiota. In the first experiment, a 48 h in vitro incubation was carried out using foregut fluid samples that were collected from 15 feral camels and also a fistulated cow. Degradability of indospicine ranged between 97% and 99%, with the higher value of 99% for camels. A pooled sample of foregut fluids from three camels that were on a roughage diet was used in a second experiment to examine the time-dependent degradation of indospicine present in the plant materials. Results indicated that camels' foregut fluids have the ability to biodegrade ∼99% of the indospicine in I. spicata within 48 h of incubation and produced 2-aminopimelamic acid and 2-aminopimelic acid. The time-dependent degradation analysis showed rapid indospicine degradation (65 nmol/h) during the first 8-18 h of incubation followed by a slower degradation rate (12 nmol/h) between 18 and 48 h. Indospicine degradation products were also degraded toward the end of the experiment. The results of these in vitro degradation studies suggest that dietary indospicine may undergo extensive degradation in the foregut of the camel, resulting in trace levels after 48 h. The retention time for plant material in the camel foregut varies depending on feed quality, and the results of this study together with the observed accumulation of indospicine in camel tissues suggest that, although indospicine can be degraded by foregut fermentation, this degradation is not complete before the passage of the digesta into the intestine.
Ingestion of indospicine-contaminated camel and horse meat has caused fatal liver injury to dogs in Australia, and it is currently not known if such contaminated meat may pose a human health risk upon dietary exposure. To date, indospicine-related research has tended to focus on analytical aspects, with little information on post-harvest management of indospicine-contaminated meat. In this study, indospicine degradation was investigated in both aqueous solution and also contaminated meat, under a range of conditions. Aqueous solutions of indospicine and indospicine-contaminated camel meat were microwaved (180 °C) or autoclaved (121 °C) with the addition of food-grade additives [0.05% (v/v) acetic acid or 0.05% (w/v) sodium bicarbonate] for 0, 15, 30, and 60 min. An aqueous sodium bicarbonate solution demonstrated the greatest efficacy in degrading indospicine, with complete degradation after 15 min of heating in a microwave or autoclave; concomitant formation of indospicine degradation products, namely, 2-aminopimelamic and 2-aminopimelic acids, was observed. Similar treatment of indospicine-contaminated camel meat with aqueous sodium bicarbonate resulted in 50% degradation after 15 min of heating in an autoclave and 100% degradation after 15 min of heating in a microwave. The results suggest that thermo-alkaline aqueous treatment has potential as a pragmatic post-harvest handling technique in reducing indospicine levels in indospicine-contaminated meat.