Displaying all 2 publications

Abstract:
Sort:
  1. Swain A, Gnanasekar P, Prava J, Rajeev AC, Kesarwani P, Lahiri C, et al.
    Microb Drug Resist, 2021 Feb;27(2):212-226.
    PMID: 32936741 DOI: 10.1089/mdr.2020.0161
    Many members of nontuberculous mycobacteria (NTM) are opportunistic pathogens causing several infections in animals. The incidence of NTM infections and emergence of drug-resistant NTM strains are rising worldwide, emphasizing the need to develop novel anti-NTM drugs. The present study is aimed to identify broad-spectrum drug targets in NTM using a comparative genomics approach. The study identified 537 core proteins in NTM of which 45 were pathogen specific and essential for the survival of pathogens. Furthermore, druggability analysis indicated that 15 were druggable among those 45 proteins. These 15 proteins, which were core proteins, pathogen-specific, essential, and druggable, were considered as potential broad-spectrum candidates. Based on their locations in cytoplasm and membrane, targets were classified as drug and vaccine targets. The identified 15 targets were different enzymes, carrier proteins, transcriptional regulator, two-component system protein, ribosomal, and binding proteins. The identified targets could further be utilized by researchers to design inhibitors for the discovery of antimicrobial agents.
    Matched MeSH terms: Nontuberculous Mycobacteria/drug effects*
  2. Jayasingam SD, Zin T, Ngeow YF
    Int J Mycobacteriol, 2017 11 25;6(4):387-390.
    PMID: 29171453 DOI: 10.4103/ijmy.ijmy_152_17
    BACKGROUND: Rapidly growing mycobacterial species (RGM) are increasingly being recognized as the cause of various superficial and deep infections in humans. Two of the species most frequently isolated from clinical specimens are Mycobacterium abscessus and Mycobacterium fortuitum. Both species are associated with antibiotic resistances that may complicate therapy. This paper describes the pattern of resistance to five antibiotics commonly prescribed for RGM infections, in M. abscessus and M. fortuitum isolated from Malaysian patients.

    METHODS: The bacterial strains studied were examined with Etest strips to determine their minimum inhibitory concentrations (MICs) toward amikacin, ciprofloxacin, clarithromycin, imipenem, and linezolid.

    RESULTS: Among 51 M. abscessus isolates examined by the Etest, the overall MICs of ciprofloxacin, imipenem, amikacin, clarithromycin, and linezolid showed resistance rates of 33.3%, 31.4%, 2.0%, 5.9%, and 21.6%, to the five antibiotics, respectively. M. abscessus subspecies abscessus was more resistant than M. abscessus subsp. massilience to ciprofloxacin, imipenem, and linezolid but was more susceptible to clarithromycin and amikacin. M. fortuitum isolates were significantly less resistant than M. abscessus to ciprofloxacin (3.6%) and imipenem (7.1%) but more resistant to clarithromycin (42.9%) and linezolid (39.3%).

    CONCLUSION: A suitable combination therapy for Malaysian patients would be amikacin plus clarithromycin and ciprofloxacin, to cover infections by all three M. abscessus subspecies and M. fortuitum.

    Matched MeSH terms: Nontuberculous Mycobacteria/drug effects*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links