Displaying all 14 publications

Abstract:
Sort:
  1. Gorman K, Liu Z, Denholm I, Brüggen KU, Nauen R
    Pest Manag Sci, 2008 Nov;64(11):1122-5.
    PMID: 18803175 DOI: 10.1002/ps.1635
    Rice brown planthopper, Nilaparvata lugens Stål, is a primary insect pest of cultivated rice, and effective control is essential for economical crop production. Resistance to neonicotinoid insecticides, in particular imidacloprid, has been reported as an increasing constraint in recent years. In order to investigate the extent of resistance, 24 samples of N. lugens were collected from China, India, Indonesia, Malaysia, Thailand and Vietnam during 2005 and 2006. Their responses to two diagnostic doses of imidacloprid (corresponding approximately to the LC(95) and 5 x LC(95) of a susceptible strain) were examined.
    Matched MeSH terms: Nitro Compounds*
  2. CoRe, H. W., Lee, H. L., M. Sofian-Azirun, Nura-Muna, A. H., Chen, C. D., O. Wan-Norafikah
    MyJurnal
    The efficacy of a 2.15% imidacloprid gel bait against laboratory strain Periplaneta americana and Blattella germanica
    was evaluated under laboratory conditions. The susceptibility trend of both species towards imidacloprid was: adult male
    < adult female < nymphs. All stages of both species were dead within 10 days in primary poisoning testing. Periplaneta
    americana adult male (LT50 = 0.47 h; LT95 = 5.24 h) died fastest, while nymphs of B. germanica took the longest time to
    reach 95% mortality (LT95 = 43.84 h). In indirect exposure via secondary poisoning, only adult males of P. americana (LT50
    = 100.63 h) and B. germanica (LT50 = 54.66 h) obtained 50% mortality before the testing ended. No complete mortalities
    were achieved in any stages of both species within 10 days of secondary poisoning testing. Therefore, imidacloprid gel
    bait used in this study was able to cause complete mortalities within less than 2 days of 10-day primary poisoning testing
    but less effective in the 10-day secondary poisoning testing.
    Matched MeSH terms: Nitro Compounds
  3. Soh LS, Veera Singham G
    Pest Manag Sci, 2021 Nov;77(11):5202-5212.
    PMID: 34272799 DOI: 10.1002/ps.6561
    BACKGROUND: The common bed bug, Cimex lectularius L., and the tropical bed bug, Cimex hemipterus (F.), are now widely regarded as important public health pests following their rapid global resurgence, largely due to insecticide resistance and an increased rate of global travel. The insecticide resistance mechanisms are well documented in C. lectularius, however, only one mechanism is validated in C. hemipterus thus far. This demands further understanding on the resistance mechanisms involved in C. hemipterus.

    RESULTS: Here, we identified differences in resistance to fenitrothion (organophosphate) and imidacloprid (neonicotinoid) related cuticle thickness in C. hemipterus. There is evidence of a possible association between cuticle thickness and resistance, but the association can be tenuous, likely because resistance is multifactorial in C. hemipterus. We also discovered a novel T1011 residue in domain IIS6 of the voltage-gated sodium channel that likely enhanced susceptibility to deltamethrin (pyrethroid) despite the presence of a L1014F mutation known to confer pyrethroid resistance in C. hemipterus. Our findings also confirmed that the M918I mutation enhanced resistance to pyrethroid when present with the L1014F mutation, which was consistent with a super-kdr phenotype, as reported previously. Multiple resistance mechanisms can be found within a single C. hemipterus population, and the presence of both M918I + L1014F mutations likely masked the influence of cuticle thickness in conferring resistance against deltamethrin. The elevated metabolic enzyme activities in some strains were not necessarily associated with increased insecticide resistance.

    CONCLUSION: This study has enhanced our understanding on the penetration resistance mechanism and target site insensitivity of sodium channels in C. hemipterus.

    Matched MeSH terms: Nitro Compounds
  4. Nurita AT, Abu Hassan A
    Trop Biomed, 2010 Dec;27(3):559-65.
    PMID: 21399598 MyJurnal
    Two performance (efficacy and attractiveness) comparisons of neonicotinoid baits QuickBayt® (imidacloprid) and Agita® (thiamethoxam) against filth flies were conducted under field conditions to determine suitability for use outdoors. The first experiment compared bait performance and the second compared effects of different applications on QuickBayt® performance. Applications compared were: (i) scattered in petri dish (SPD); (ii) wet-down in petri dish (WPD); (iii) scattered on cardboard (SCB) and (iv) painted on cardboards (PCB). Efficacy and attractiveness were assessed based on knockdown percentage (KD%) and number of flies feeding on baits, respectively. The KD% of QuickBayt® (34% ± 3.0%) was not significantly higher than Agita® (29% ± 1.3%) (t-test, P>0.05). Agita® (101 ± 5.7 flies) was significantly more attractive to flies than QuickBayt® (76 ± 4.8 flies) and the sugar solution (49 ± 7.2) (one-way ANOVA, P<0.05). The PCB and SCB applications were significantly more attractive to filth flies than WPD and SPD (One-way ANOVA, P<0.05), however differences in KD% were not significantly different (One-way ANOVA, P>0.05). The two baits provided the same level of efficacy in a wide-open area against filth flies of various species. QuickBayt® was more versatile; efficacy was not significantly affected by different applications. Surface area and moisture affects attractiveness of the bait.
    Matched MeSH terms: Nitro Compounds/pharmacology*; Nitro Compounds/chemistry
  5. Ong SQ, Ab Majid AH, Ahmad H
    Trop Life Sci Res, 2017 Jul;28(2):45-55.
    PMID: 28890760 MyJurnal DOI: 10.21315/tlsr2017.28.2.4
    In this study, bifenthrin (Maxxthor SC, Ensystex Australasia Pty Ltd), imidacloprid (Prothor SC, Ensystex Australasia Pty Ltd) and fipronil (Regent(®)50SC, Bayer) were applied on the natural infest manures according to the manufacturer rate during a broiler breeding cycle. Solvent direct-immersion extraction (SDIE) was used in detecting the target compound and later, quantification of the insecticide residues in field condition was investigated. The samples were prior cleaned up by solid-phase extraction (SPE) and analysed by Ultra-Performance Liquid Chromatography (UPLC) - photodiode array (PDA) system. In the field trial, three insecticides were showed accumulation during the broiler breeding period and it is suggested that they acted as adulticides when applied on the poultry manures, this is supported by the significant correlation between the increment of insecticide residues to the reduction percentage of adult flies (<0.05). Fipronil showed significantly greater reduction on the adult fly compared to the other insecticides, in which the reduction rate compared to control population at the end of the broiler breeding period; fipronil, imidaclopril and bifenthrin reduced 51.51%, 28.30% and 30.84% of adult flies, respectively.
    Matched MeSH terms: Nitro Compounds
  6. Miah MA, Elzaki MEA, Husna A, Han Z
    Arch Insect Biochem Physiol, 2019 Feb;100(2):e21525.
    PMID: 30511429 DOI: 10.1002/arch.21525
    Deltamethrin resistance in Laodelphax striatellus had been associated with its oxidative detoxification by overexpression of four cytochrome P450 monooxygenases like CYP353D1v2, CYP6FU1, CYP6AY3v2, and CYP439A1v3. The first three P450s have been validated for insecticide-metabolizing capability and only CYP6FU1 was found to degrade deltamethrin. In this study, an investigation was conducted to confirm the capability of CYP439A1v3 to degrade deltamethrin. The CYP439A1v3 was first expressed in Sf9 cell line and its recombinant enzyme was tested for metabolic activity against different insecticides using substrate depletion assay combined with metabolite identification. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and carbon monoxide (CO)-difference spectra analysis showed that the intact cytochrome P450 protein was successfully expressed. Tests with probe substrates proved its enzyme activity, as p-nitroanisole, ethoxycoumarin, and ethoxyresorufin were preferentially metabolized (specific activity 7.767 ± 1.22, 1.325 ± 0.37, and 0.355 ± 0.37 nmol/min per mg of protein, respectively) while only luciferin-HEGE was not. In vitro incubation of the recombinant CYP439A1v3 protein with deltamethrin revealed hydroxylation by producing hydroxydeltamethrin. On the contrary, no metabolite/metabolism was seen with nonpyrethroid insecticide, including imidacloprid, buprofezin, chlorpyrifos, and fipronil. To the best of our knowledge, this is the first study to link a CYP450 from family 439 to confer pyrethroid resistance to L. striatellus. This finding should help in the design of appropriate insecticide resistance management for control of this strain of L. striatellus.
    Matched MeSH terms: Nitro Compounds
  7. Soh LS, Veera Singham G
    Sci Rep, 2022 Mar 22;12(1):4919.
    PMID: 35318403 DOI: 10.1038/s41598-022-09015-0
    The use of insecticides remains important in managing pest insects. Over the years, many insects manifested physiological and behavioral modifications resulting in reduced efficacy of insecticides targeted against them. Emerging evidence suggests that bacterial symbionts could modulate susceptibility of host insects against insecticides. Here, we explore the influence of host microbiota in affecting the susceptibility of insect host against different insecticides in the blood-sucking bed bug, Cimex hemipterus. Rifampicin antibiotic treatment resulted in increased susceptibility to fenitrothion and imidacloprid, but not against deltamethrin. Meanwhile, the host fitness parameters measured in the present study were not significantly affected by rifampicin treatment, suggesting the role of bacterial symbionts influencing susceptibility against the insecticides. 16S metagenomics sequencing revealed a drastic shift in the composition of several bacterial taxa following rifampicin treatment. The highly abundant Alphaproteobacteria (Wolbachia > 90%) and Gammaproteobacteria (Yersinia > 6%) in control bed bugs were significantly suppressed and replaced by Actinobacteria, Bacilli, and Betaproteobacteria in the rifampicin treated F1 bed bugs, suggesting possibilities of Wolbachia mediating insecticide susceptibility in C. hemipterus. However, no significant changes in the total esterase, GST, and P450 activities were observed following rifampicin treatment, indicating yet unknown bacterial mechanisms explaining the observed phenomena. Re-inoculation of microbial content from control individuals regained the tolerance of rifampicin treated bed bugs to imidacloprid and fenitrothion. This study provides a foundation for a symbiont-mediated mechanism in influencing insecticide susceptibility that was previously unknown to bed bugs.
    Matched MeSH terms: Nitro Compounds
  8. Adnan SM, Uddin MM, Alam MJ, Islam MS, Kashem MA, Rafii MY, et al.
    ScientificWorldJournal, 2014;2014:709614.
    PMID: 25140344 DOI: 10.1155/2014/709614
    An experiment was conducted in Field Laboratory, Department of Entomology at Bangladesh Agricultural University, Mymensingh, during 2013 to manage the mango hopper, Idioscopus clypealis L, using three chemical insecticides, Imidacloprid (0.3%), Endosulfan (0.5%), and Cypermethrin (0.4%), and natural Neem oil (3%) with three replications of each. All the treatments were significantly effective in managing mango hopper in comparison to the control. Imidacloprid showed the highest efficacy in percentage of reduction of hopper population (92.50 ± 9.02) at 72 hours after treatment in case of 2nd spray. It also showed the highest overall percentage of reduction (88.59 ± 8.64) of hopper population and less toxicity to natural enemies including green ant, spider, and lacewing of mango hopper. In case of biopesticide, azadirachtin based Neem oil was found effective against mango hopper as 48.35, 60.15, and 56.54% reduction after 24, 72, and 168 hours of spraying, respectively, which was comparable with Cypermethrin as there was no statistically significant difference after 168 hours of spray. Natural enemies were also higher after 1st and 2nd spray in case of Neem oil.
    Matched MeSH terms: Nitro Compounds
  9. AZRILAWANI AHMAD, NUR ANIS ZAFIRAH ZAINORDIN, NUR AMIRA JAAFAR
    MyJurnal
    A preliminary assessment of a simple and rapid electrochemical method was carried out to analyse imidacloprid (IMI) in water samples using cyclic voltammetry (CV) based on modified screen-printed gold electrode (SPGE). Self-assembled monolayer (SAM) was optimized using 11-mercaptoundecanoic acid (11-MUA) with several parameters such as scan rates, type of supporting electrolyte, and pH of the supporting electrolyte. The modified SPGE showed high suppressed current against the potential due to the formation of a monolayer on the electrode surface. Surface morphology of the electrode was analysed using Scanning Electron Microscopy (SEM) confirming that 11-MUA was present on the modified SPGE. The water samples were collected from GM Peladang, Kuala Terengganu and two locations at Universiti Malaysia Terengganu. Method detection limit was expressed as limit of detection (LOD) and limit of quantification (LOQ) for modified SPGE which were calculated at 3.784 and 12.613 mg/L in water samples, respectively. This study showed that the reduction peak current observed on the modified electrode was lower compared with oxidation peak current. Hence, gold is unsuitable for IMI detection.
    Matched MeSH terms: Nitro Compounds
  10. Shen TC
    Plant Physiol, 1972 Apr;49(4):546-9.
    PMID: 16657998
    Nitrate simultaneously induced NADH- and NADPH-nitrate reductase activities in rice seedlings. Chloramphenicol, other organic nitro-compounds such as o-nitroaniline and 2,4-dinitrophenol and nitrite also induced nitrate reductase in rice seedlings. The nitrate- or nitrite-induced nitrate reductase could accept electrons more efficiently from NADH than NADPH. However, when this enzyme was induced by organic nitro-compounds, it could accept electrons more efficiently from NADPH than NADH.
    Matched MeSH terms: Nitro Compounds
  11. Sivaranjan K, Padmaraj O, Santhanalakshmi J, Sathuvan M, Sathiyaseelan A, Sagadevan S
    Sci Rep, 2020 02 13;10(1):2586.
    PMID: 32054936 DOI: 10.1038/s41598-020-59491-5
    Exploring the new catalytic systems for the reduction of organic and inorganic pollutants from an indispensable process in chemical, petrochemical, pharmaceutical and food industries, etc. Hence, in the present work, authors motivated to synthesize bare reduced graphene oxide (rGO), polyaniline (PANI), three different ratios of rGO-PANI(80:20,50:50, 10:90) composites and rGO-PANI(80:20,50:50, 10:90) supported mono (Pd) & bimetallic [Pd: Au(1:1,1:2, 2:1)] nanocomposite by a facile chemical reduction method. Also, it investigated their catalytic performances for the reduction of organic/inorganic pollutants and antimicrobial activities. All the freshly prepared bare rGO, PANI, three different ratios of rGO-PANI(80:20, 50:50,10:90) composites and rGO-PANI(80:20, 50:50,10:90)/Pd & Pd: Au(1:1, 1:2,2:1) nanocomposite hybrid catalysts were characterized using UV-Vis, FT-IR, SEM, FE-SEM, EDAX, HR-TEM, XRD, XPS and Raman spectroscopy analysis. Among them, an optimized best composition of rGO-PANI(80:20)/Pd: Au(1:1) bimetallic nanocomposite hybrid catalyst exhibits better catalytic reduction and antimicrobial activities than other composites, as a result of strong electrostatic interactions between rGO, PANI and bimetal (Pd: Au) NPs through a synergistic effect. Hence, an optimized rGO-PANI(80:20)/Pd:Au(1:1) bimetallic nanocomposite catalyst would be considered as a suitable catalyst for the reduction of different nitroarenes, organic dyes, heavy metal ions and also significantly inhibit the growth of S. aureus, S. Typhi as well as Candida albicans and Candida kruesi in wastewater.
    Matched MeSH terms: Nitro Compounds/isolation & purification
  12. How YF, Lee CY
    Pest Manag Sci, 2011 Jun;67(6):734-40.
    PMID: 21370390 DOI: 10.1002/ps.2123
    Five formulated insecticides (lambda-cyhalothrin at 10 mg m⁻², bifenthrin at 50 mg m⁻², fipronil at 10 mg m⁻², fenitrothion at 50 mg m⁻², imidacloprid at 5 mg m⁻²) and one active ingredient (DDT at 500 mg m⁻²) were evaluated using a surface contact method against early and late instars and adults of two strains of the tropical bed bug, Cimex hemipterus (F.). Synergism of lambda-cyhalothrin and fipronil using piperonyl butoxide (PBO) was also assessed.
    Matched MeSH terms: Nitro Compounds/pharmacology
  13. Dang K, Singham GV, Doggett SL, Lilly DG, Lee CY
    J Econ Entomol, 2017 04 01;110(2):558-566.
    PMID: 28115498 DOI: 10.1093/jee/tow296
    The performance of five insecticides (bendiocarb, deltamethrin, DDT, malathion, and imidacloprid) using three application methods (oil-based insecticide films on filter paper, and acetone-based insecticide deposits on two substrates: filter paper and glass) was assessed against a susceptible strain of Cimex lectularius (L.) and two resistant strains of Cimex hemipterus (F.). Substrate type significantly affected (P 
    Matched MeSH terms: Nitro Compounds/pharmacology
  14. Lum PT, Sekar M, Gan SH, Bonam SR, Shaikh MF
    ACS Chem Neurosci, 2021 Feb 03;12(3):391-418.
    PMID: 33475334 DOI: 10.1021/acschemneuro.0c00824
    Huntington's disease (HD), a neurodegenerative disease, normally starts in the prime of adult life, followed by a gradual occurrence of characteristic psychiatric disturbances and cognitive and motor dysfunction. To the best of our knowledge, there is no treatment available to completely mitigate the progression of HD. Among various therapeutic approaches, exhaustive literature reports have confirmed the medicinal benefits of natural products in HD experimental models. Building on this information, this review presents a brief overview of the neuroprotective mechanism(s) of natural products against in vitro/in vivo models of HD. Relevant studies were identified from several scientific databases, including PubMed, ScienceDirect, Scopus, and Google Scholar. After screening through literature from 2005 to the present, a total of 14 medicinal plant species and 30 naturally isolated compounds investigated against HD based on either in vitro or in vivo models were included in the present review. Behavioral outcomes in the HD in vivo model showed that natural compounds significantly attenuated 3-nitropropionic acid (3-NP) induced memory loss and motor incoordination. The biochemical alteration has been markedly alleviated with reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and increased mitochondrial energy production. Interestingly, following treatment with certain natural products, 3-NP-induced damage in the striatum was ameliorated, as seen histologically. Overall, natural products afforded varying degrees of neuroprotection in preclinical studies of HD via antioxidant and anti-inflammatory properties, preservation of mitochondrial function, inhibition of apoptosis, and induction of autophagy.
    Matched MeSH terms: Nitro Compounds
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links