Displaying all 5 publications

Abstract:
Sort:
  1. Tan KY, Liew JL, Tan NH, Quah ESH, Ismail AK, Tan CH
    J Proteomics, 2019 02 10;192:246-257.
    PMID: 30243938 DOI: 10.1016/j.jprot.2018.09.006
    The Asiatic coral snakes are basal in the phylogeny of coral snakes. Although envenoming by the Asiatic coral snakes is rarely fatal, little is known about their venom properties and variability from the American coral snakes. Integrating reverse-phase high performance liquid chromatography and nano-liquid chromatography-tandem mass spectrometry, we showed that the venom proteome of the Malaysian banded or striped coral snake (Calliophis intestinalis) was composed of mainly phospholipases A2 (PLA2, 43.4%) and three-finger toxins (3FTx, 20.1%). Within 3FTx, the cytotoxins or cardiotoxins (CTX) dominated while the neurotoxins' content was much lower. Its subproteomic details contrasted with the 3FTx profile of most Micrurus sp., illustrating a unique dichotomy of venom phenotype between the Old and the New World coral snakes. Calliophis intestinalis venom proteome was correlated with measured enzymatic activities, and in vivo it was myotoxic but non-lethal to mice, frogs and geckos at high doses (5-10 μg/g). The venom contains species-specific toxins with distinct sequences and antigenicity, and the antibodies raised against PLA2 and CTX of other elapids showed poor binding toward its venom antigens. The unique venom proteome of C. intestinalis unveiled a repertoire of novel toxins, and the toxicity test supported the need for post-bite monitoring of myotoxic complication. SIGNIFICANCE: Malaysian banded or striped coral snake (Calliophis intestinalis) has a cytotoxin (CTX)-predominating venom proteome, a characteristic shared by its congener, the Malayan blue coral snake (Calliophis bivirgata). With little neurotoxins (NTX), it illustrates a CTX/NTX dichotomy of venom phenotype between the Old World and the New World coral snakes. The low toxicity of the venom imply that C. intestinalis bite envenoming can be managed via symptomatic relief of the mild to moderate pain with appropriate analgesia. Systemically, the serum creatine kinase level of patients should be monitored serially for potential complication of myotoxicity. The distinct antigenicity of the venom proteins implies that the empirical use of heterologous antivenom is mostly inappropriate and not recommended.
    Matched MeSH terms: Neurotoxins/metabolism*
  2. Akbar MA, Mohd Yusof NY, Tahir NI, Ahmad A, Usup G, Sahrani FK, et al.
    Mar Drugs, 2020 Feb 05;18(2).
    PMID: 32033403 DOI: 10.3390/md18020103
    Saxitoxin is an alkaloid neurotoxin originally isolated from the clam Saxidomus giganteus in 1957. This group of neurotoxins is produced by several species of freshwater cyanobacteria and marine dinoflagellates. The saxitoxin biosynthesis pathway was described for the first time in the 1980s and, since then, it was studied in more than seven cyanobacterial genera, comprising 26 genes that form a cluster ranging from 25.7 kb to 35 kb in sequence length. Due to the complexity of the genomic landscape, saxitoxin biosynthesis in dinoflagellates remains unknown. In order to reveal and understand the dynamics of the activity in such impressive unicellular organisms with a complex genome, a strategy that can carefully engage them in a systems view is necessary. Advances in omics technology (the collective tools of biological sciences) facilitated high-throughput studies of the genome, transcriptome, proteome, and metabolome of dinoflagellates. The omics approach was utilized to address saxitoxin-producing dinoflagellates in response to environmental stresses to improve understanding of dinoflagellates gene-environment interactions. Therefore, in this review, the progress in understanding dinoflagellate saxitoxin biosynthesis using an omics approach is emphasized. Further potential applications of metabolomics and genomics to unravel novel insights into saxitoxin biosynthesis in dinoflagellates are also reviewed.
    Matched MeSH terms: Neurotoxins/metabolism
  3. Tan CH, Wong KY, Chong HP, Tan NH, Tan KY
    J Proteomics, 2019 08 30;206:103418.
    PMID: 31201947 DOI: 10.1016/j.jprot.2019.103418
    The Philippine cobra, Naja philippinensis, is a WHO Category 1 venomous snake of medical importance responsible for fatal envenomation in the northern Philippines. To elucidate the venom proteome and pathophysiology of envenomation, N. philippinensis venom proteins were decomplexed with reverse-phase high-performance liquid chromatography, and protein fractions were subsequently digested with trypsin, followed by nano-liquid chromatography-tandem mass spectrometry analysis and data mining. Three-finger toxins (3FTX, 66.64% of total venom proteins) and phospholipases A2 (PLA2, 22.88%) constitute the main bulk of venom proteome. Other proteins are present at low abundances (<4% each); these include metalloproteinase, serine protease, cobra venom factor, cysteine-rich secretory protein, vespryn, phosphodiesterase, 5' nucleotidase and nerve growth factor. In the three-finger toxin family, the alpha-neurotoxins comprise solely short neurotoxins (SNTX, 44.55%), supporting that SNTX is the principal toxin responsible for neuromuscular paralysis and lethality reported in clinical envenomation. Cytotoxins (CTX) are the second most abundant 3FTX proteins in the venom (21.31%). The presence of CTX correlates with the venom cytotoxic effect, which is more prominent in murine cells than in human cells. From the practical standpoint, SNTX-driven neuromuscular paralysis is significant in N. philippinensis envenomation. Antivenom production and treatment should be tailored accordingly to ensure effective neutralization of SNTX. BIOLOGICAL SIGNIFICANCE: The venom proteome of Naja philippinensis, the Philippine cobra, is unravelled for the first time. Approximately half the protein bulk of the venom is made up of short neurotoxins (44.55% of the total venom proteins). As the only alpha-neurotoxins present in the venom, short neurotoxins are the causative toxins of the post-synaptic blockade and fast-onset neuromuscular paralysis in N. philippinensis envenomation. A substantial amount of cytotoxins (21.31%) was also detected in N. philippinensis venom, supporting that the venom can be cytotoxic although the effect is much weaker in human cells compared to murine cells. The finding is consistent with the low incidence of local tissue necrosis in N. philippinensis envenomation, although this does not negate the need for monitoring and care of bite wound in the patients.
    Matched MeSH terms: Neurotoxins/metabolism
  4. Tan CH, Tan KY
    Toxins (Basel), 2021 02 09;13(2).
    PMID: 33572266 DOI: 10.3390/toxins13020127
    Envenomation resulted from sea snake bite is a highly lethal health hazard in Southeast Asia. Although commonly caused by sea snakes of Hydrophiinae, each species is evolutionarily distinct and thus, unveiling the toxin gene diversity within individual species is important. Applying next-generation sequencing, this study investigated the venom-gland transcriptome of Hydrophis curtus (spine-bellied sea snake) from Penang, West Malaysia. The transcriptome was de novo assembled, followed by gene annotation and sequence analyses. Transcripts with toxin annotation were only 96 in number but highly expressed, constituting 48.18% of total FPKM in the overall transcriptome. Of the 21 toxin families, three-finger toxins (3FTX) were the most abundantly expressed and functionally diverse, followed by phospholipases A2. Lh_FTX001 (short neurotoxin) and Lh_FTX013 (long neurotoxin) were the most dominant 3FTXs expressed, consistent with the pathophysiology of envenomation. Lh_FTX001 and Lh_FTX013 were variable in amino acid compositions and predicted epitopes, while Lh_FTX001 showed high sequence similarity with the short neurotoxin from Hydrophis schistosus, supporting cross-neutralization effect of Sea Snake Antivenom. Other toxins of low gene expression, for example, snake venom metalloproteinases and L-amino acid oxidases not commonly studied in sea snake venom were also identified, enriching the knowledgebase of sea snake toxins for future study.
    Matched MeSH terms: Neurotoxins/metabolism
  5. Gan SY, Wong LZ, Wong JW, Tan EL
    Int J Biol Macromol, 2019 Jan;121:207-213.
    PMID: 30300695 DOI: 10.1016/j.ijbiomac.2018.10.021
    Alzheimer's disease (AD) is a neurodegenerative disease that leads to progressive loss of neurons which often results in deterioration of memory and cognitive function. The development of AD is highly associated with the formation of senile plaques and neurofibrillary tangles. Amyloid β (Aβ) induces neurotoxicity and contributes to the development of AD. Recent evidences also highlighted the importance of neuroglobin (Ngb) in ameliorating AD. This study assessed the ability of fucosterol, a phytosterol found in brown alga, in protecting SH-SY5Y cells against Aβ-induced neurotoxicity. Its effects on the mRNA levels of APP and Ngb as well as the intracellular Aβ levels were also determined in Aβ-induced SH-SY5Y cells. SH-SY5Y cells were exposed to fucosterol prior to Aβ treatment. The effect on apoptosis was determined using Annexin V FITC staining and mRNA expression was studied using RT-PCR. Flow cytometry confirmed the protective effects of fucosterol on SH-SY5Y cells against Aβ-induced apoptosis. Pretreatment with fucosterol increased the Ngb mRNA levels but reduced the levels of APP mRNA and intracellular Aβ in Aβ-induced SH-SY5Y cells. These observations demonstrated the protective properties of fucosterol against Aβ-induced neurotoxicity in neuronal cells.
    Matched MeSH terms: Neurotoxins/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links