Displaying all 6 publications

Abstract:
Sort:
  1. Iwanaga H, Teshima KM, Khatab IA, Inomata N, Finkeldey R, Siregar IZ, et al.
    Ecol Evol, 2012 Jul;2(7):1663-75.
    PMID: 22957170 DOI: 10.1002/ece3.284
    Distribution of tropical rainforests in Southeastern Asia has changed over geo-logical time scale, due to movement of tectonic plates and/or global climatic changes. Shorea parvifolia is one of the most common tropical lowland rainforest tree species in Southeastern Asia. To infer population structure and demographic history of S. parvifolia, as indicators of temporal changes in the distribution and extent of tropical rainforest in this region, we studied levels and patterns of nucleotide polymorphism in the following five nuclear gene regions: GapC, GBSSI, PgiC, SBE2, and SODH. Seven populations from peninsular Malaysia, Sumatra, and eastern Borneo were included in the analyses. STRUCTURE analysis revealed that the investigated populations are divided into two groups: Sumatra-Malay and Borneo. Furthermore, each group contained one admixed population. Under isolation with migration model, divergence of the two groups was estimated to occur between late Pliocene (2.6 MYA) and middle Pleistocene (0.7 MYA). The log-likelihood ratio tests of several demographic models strongly supported model with population expansion and low level of migration after divergence of the Sumatra-Malay and Borneo groups. The inferred demographic history of S. parvifolia suggested the presence of a scarcely forested land bridge on the Sunda Shelf during glacial periods in the Pleistocene and predominance of tropical lowland rainforest at least in Sumatra and eastern Borneo.
    Matched MeSH terms: Mya
  2. Tong SL, Pang FY, Phang SM, Lai HC
    Environ Pollut, 1996;91(2):209-16.
    PMID: 15091442
    The occurrence of tributyltin (TBT) is reported in the coastal waters of a few selected sites in Peninsular Malaysia. Water, bivalves and sediment samples collected were analysed specifically for TBT using sensitive analytical methods which involved a solvent extraction procedure with appropriate clean-up followed by graphite furnace atomic absorption spectrometric measurements. The levels of TBT in the seawater in unexposed areas were found in the range from <3.4 to 20 ng litre(-1) as compared to coastal areas with high boat and ship activities where TBT levels in seawater were generally above 30 ng litre(-1), with the highest level found at 281.8 ng litre(-1). TBT levels in the tissues of random cockle and soft-shell clam samples from local markets were found in the range from <0.5 to 3.7 ng g(-1) wet weight. The levels of TBT found in green mussel samples both from the market (23.5 ng g(-1) wet weight) and those from a mussel farm (14.2 ng g(-1) wet weight) indicate slight accumulation of TBT. In sediments, TBT levels were found ranging from <0.7 ng g(-1) dry weight in unexposed coastal sites to as high as 216.5 ng g(-1) dry weight for a site within a port area.
    Matched MeSH terms: Mya
  3. Jiruskova A, Motyka M, Bocek M, Bocak L
    PeerJ, 2019;7:e6511.
    PMID: 30863675 DOI: 10.7717/peerj.6511
    We investigated the spatial and temporal patterns of Cautires diversification on the Malay Peninsula and Sumatra to understand if the narrow and frequently dry Malacca Strait separates different faunas. Moreover, we analyzed the origin of Cautires in Malayan and Sumatran mountains. We sampled 18 localities and present the mtDNA-based phylogeny of 76 species represented by 388 individuals. The phylogenetic tree was dated using mtDNA evolution rates and the ancestral ranges were estimated using the maximum likelihood approach. The phylogeny identified multiple lineages on the Malay Peninsula since the Upper Eocene (35 million years ago, mya) and a delayed evolution of diversity in Sumatra since the Upper Oligocene (26 mya). A limited number of colonization events across the Malacca Strait was identified up to the Pliocene and more intensive faunal exchange since the Pleistocene. The early colonization events were commonly followed by in situ diversification. As a result, the Malacca Strait now separates two faunas with a high species-level turnover. The montane fauna diversified in a limited space and seldom took part in colonization events across the Strait. Besides isolation by open sea or a savannah corridor, mimetic patterns could decrease the colonization capacity of Cautires. The Malay fauna is phylogenetically more diverse and has a higher value if conservation priorities should be defined.
    Matched MeSH terms: Mya
  4. Bohlen J, Dvořák T, Šlechta V, Šlechtová V
    Mol Phylogenet Evol, 2020 07;148:106806.
    PMID: 32247884 DOI: 10.1016/j.ympev.2020.106806
    Western Southeast Asia is hosting one of the world's most diverse faunas, and one of the reasons for this huge diversity is the complex geologic past of the area, increasing the frequency of isolation and expansion events over evolutionary time scale. As an example case, the present study reveals the phylogeny and biogeographic history of the Paracanthocobitis zonalternans species complex, small benthic freshwater fish (Teleostei: Nemacheilidae) that are commonly occurring across western Southeast Asia (from central Myanmar through western and southern Thailand to northern Malaysia). The group is particularly interesting since it occurs in three biogeographic subdivisions (Indian, Indochinese, Malay/Sundaic) and across all of the major biogeographic barriers in the region. Basing on mitochondrial and nuclear sequence data of 93 samples from about 50 localities we found six major clades, most with exclusive geographic distribution. Divergence time dated the origin of the P. zonalternans species complex to early Miocene (17.8 MYA) and a biogeographic analysis identified the Tenasserim region as the ancestral region. From this region the fish spread during periods of lowered global sea level, particularly during late Miocene (11-8 MYA) northwards into all Burmese river basins and southwards into south Thailand and northern Malaysia. Besides lowered global sea level periods, local stream capture events allowed the complex to expand, e.g. into the Mae Klong basin. Strong fragmentations during periods with elevated sea level during the Pliocene and Pleistocene repeatedly restricted populations to refuges and shaped the observed major lineages. Our results document a higher diversity within the P. zonalternans species complex than formerly believed and a strong impact of global sea level on its evolutionary history. Low sea levels promoted dispersal and elevated sea levels fragmentation events. A very similar impact of sea level changes can be expected in all stationary fauna (freshwater and terrestrial) in all non-mountainous coastal regions worldwide.
    Matched MeSH terms: Myanmar; Mya
  5. Nurul Alia Risma Rismayuddin, Munirah Mokhtar, Noratikah Othman, Ahmad Faisal Ismail, Mohd Hafiz Arzmi
    MyJurnal
    Introduction:Candida albicans is an opportunistic fungus that is associated with oral carcinogenesis. In addition, biofilm formation has been one of the important virulence factors of the yeast. Streptococcus salivarius K12 is an oral probiotic while Musa acuminata is a well-known prebiotic. The objective of this study is to investigate the effect of S. salivarius K12 and M. acuminata skin aqueous extract (synbiotic) on C. albicans with the hypothesis that S. salivariusK12 and M. acuminata inhibit C. albicans biofilm formation. Methods: To develop mono-species biofilm, C. albicans(ATCC MYA-4901 and cancer isolates, ALC2 and ALC3 strains) and S. salivarius K12 were standardised to 105 cells and 106 cells, respectively and grown in 96-well plate in nutrient broth (NB) or RPMI at 37 °C for 72 h. Polymicro-bial biofilms were developed by inoculating both microorganisms in the same well with similar cell number as in mono-species. To determine the effect of synbiotic, similar protocol was repeated by mixing with 800 mg mL-1 of M. acuminata skin extract and incubated at 37 °C for 72 h. The medium was replenished at every 24 h, aseptically. Finally, the biofilms were assessed using crystal violet assay and the optical density was measured at OD620nm. Results:C. albicans strain MYA-4901 and ALC3, when grown in polymicrobial with S. salivarius K12 in NB that is predominated by yeast-form C. albicans, exhibited decreased biofilms by 71.40±11.7% and 49.40±3.9%, respec-tively when compared to the expected biofilms. Meanwhile in RPMI, which C. albicans strain ATCC MYA-4901, ALC2 and ALC3 were predominated by hyphal-form showed decreased biofilms by 72.0±26.7%, 53.4±14.4% and 65.7±6.7%, respectively when compared to the expected biofilms. Conclusion:S. salivarius K12 and M. acuminata skin extract synbiotic inhibit biofilm formation of C. albicans yeast and hyphal forms thus supported the hypothesis of the present study.
    Matched MeSH terms: Mya
  6. Wettewa E, Wallace LE
    Mol Phylogenet Evol, 2021 04;157:107070.
    PMID: 33421614 DOI: 10.1016/j.ympev.2021.107070
    Platanthera is one of the largest genera of temperate orchids in the Holarctic and exemplifies a lineage that has adaptively radiated into diverse habitats within North America, Asia, Europe, North Africa, Borneo, and Sarawak. Major centers of diversity in this genus are North America and eastern Asia. Despite its diversity, a thorough phylogenetic hypothesis for the genus is lacking because no studies have yet sampled taxa exhaustively or developed a robust molecular toolkit. While there is strong evidence that suggests monophyly of subgenus Limnorchis, most taxa in this group have not been included in a phylogenetic analysis. In this study, we developed a new toolkit for Platanthera consisting of genomic information from 617 low-copy nuclear loci. Using a targeted enrichment approach, we collected high-throughput sequence data in 23 accessions of nine of the 12 diploid species of subgenus Limnorchis and outgroup species across Platanthera. A maximum likelihood analysis resolved a strongly supported monophyletic clade for subgenus Limnorchis. Ancestral biogeographic reconstruction indicated that subgenus Limnorchis originated in western North America ca. 3-4.5 Mya from an ancestor that was widespread in western North America and eastern Asia and subsequently diversified in western North America, followed by dispersal of some species to eastern North America. Our results indicate complex biogeographic connections between Asia and North America, and therefore it suggests that Platanthera is a suitable system to test biogeographic hypotheses over time and space in the Holarctic. Our results are also expected to facilitate further study of diversification and biogeographic spread across Platanthera and lay the groundwork for understanding independent origins, biogeography, and morphological diversification of polyploid species within subgenus Limnorchis.
    Matched MeSH terms: Mya
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links