Linkage and candidate gene studies have identified several breast cancer susceptibility genes, but the overall contribution of coding variation to breast cancer is unclear. To evaluate the role of rare coding variants more comprehensively, we performed a meta-analysis across three large whole-exome sequencing datasets, containing 26,368 female cases and 217,673 female controls. Burden tests were performed for protein-truncating and rare missense variants in 15,616 and 18,601 genes, respectively. Associations between protein-truncating variants and breast cancer were identified for the following six genes at exome-wide significance (P
CHRM3 codes for the M3 muscarinic acetylcholine receptor that is located on the surface of smooth muscle cells of the detrusor, the muscle that effects urinary voiding. Previously, we reported brothers in a family affected by a congenital prune belly-like syndrome with mydriasis due to homozygous CHRM3 frameshift variants. In this study, we describe two sisters with bladders that failed to empty completely and pupils that failed to constrict fully in response to light, who are homozygous for the missense CHRM3 variant c.352G > A; p.(Gly118Arg). Samples were not available for genotyping from their brother, who had a history of multiple urinary tract infections and underwent surgical bladder draining in the first year of life. He died at the age of 6 years. This is the first independent report of biallelic variants in CHRM3 in a family with a rare serious bladder disorder associated with mydriasis and provides important evidence of this association.
Pathogenic variants in multiple genes on the X chromosome have been implicated in syndromic and non-syndromic intellectual disability disorders. ZFX on Xp22.11 encodes a transcription factor that has been linked to diverse processes including oncogenesis and development, but germline variants have not been characterized in association with disease. Here, we present clinical and molecular characterization of 18 individuals with germline ZFX variants. Exome or genome sequencing revealed 11 variants in 18 subjects (14 males and 4 females) from 16 unrelated families. Four missense variants were identified in 11 subjects, with seven truncation variants in the remaining individuals. Clinical findings included developmental delay/intellectual disability, behavioral abnormalities, hypotonia, and congenital anomalies. Overlapping and recurrent facial features were identified in all subjects, including thickening and medial broadening of eyebrows, variations in the shape of the face, external eye abnormalities, smooth and/or long philtrum, and ear abnormalities. Hyperparathyroidism was found in four families with missense variants, and enrichment of different tumor types was observed. In molecular studies, DNA-binding domain variants elicited differential expression of a small set of target genes relative to wild-type ZFX in cultured cells, suggesting a gain or loss of transcriptional activity. Additionally, a zebrafish model of ZFX loss displayed an altered behavioral phenotype, providing additional evidence for the functional significance of ZFX. Our clinical and experimental data support that variants in ZFX are associated with an X-linked intellectual disability syndrome characterized by a recurrent facial gestalt, neurocognitive and behavioral abnormalities, and an increased risk for congenital anomalies and hyperparathyroidism.
The predictability of neurocognitive outcomes in patients with traumatic brain injury is not straightforward. The extent and nature of recovery in patients with mild traumatic brain injury (mTBI) are usually heterogeneous and not substantially explained by the commonly known demographic and injury-related prognostic factors despite having sustained similar injuries or injury severity. Hence, this study evaluated the effects and association of the Brain Derived Neurotrophic Factor (BDNF) missense mutations in relation to neurocognitive performance among patients with mTBI. 48 patients with mTBI were prospectively recruited and MRI scans of the brain were performed within an average 10.1 (SD 4.2) hours post trauma with assessment of their neuropsychological performance post full Glasgow Coma Scale (GCS) recovery. Neurocognitive assessments were repeated again at 6 months follow-up. The paired t-test, Cohen's d effect size and repeated measure ANOVA were performed to delineate statistically significant differences between the groups [wildtype G allele (Val homozygotes) vs. minor A allele (Met carriers)] and their neuropsychological performance across the time point (T1 = baseline/ admission vs. T2 = 6th month follow-up). Minor A allele carriers in this study generally performed more poorly on neuropsychological testing in comparison wildtype G allele group at both time points. Significant mean differences were observed among the wildtype group in the domains of memory (M = -11.44, SD = 10.0, p = .01, d = 1.22), executive function (M = -11.56, SD = 11.7, p = .02, d = 1.05) and overall performance (M = -6.89 SD = 5.3, p = .00, d = 1.39), while the minor A allele carriers showed significant mean differences in the domains of attention (M = -11.0, SD = 13.1, p = .00, d = .86) and overall cognitive performance (M = -5.25, SD = 8.1, p = .01, d = .66).The minor A allele carriers in comparison to the wildtype G allele group, showed considerably lower scores at admission and remained impaired in most domains across the timepoints, although delayed signs of recovery were noted to be significant in the domains attention and overall cognition. In conclusion, the current study has demonstrated the role of the BDNF rs6265 Val66Met polymorphism in influencing specific neurocognitive outcomes in patients with mTBI. Findings were more detrimentally profound among Met allele carriers.
X-linked adrenoleukodystrophy is caused by a defective peroxisomal membrane transporter, ABCD1, responsible for transporting very-long-chain fatty acid substrate into peroxisomes for degradation. The main biochemical defect, which is also one of the major diagnostic hallmarks, of X-linked adrenoleukodystrophy is the accumulation of saturated very-long-chain fatty acids in all tissues and body fluids.
Hypotheses explaining pathogenesis of secondary hyperparathyroidism (SH) in late and severe CKD as a unique entity called Sagliker syndrome (SS) are still unclear. This international study contains 60 patients from Turkey, India, Malaysia, China, Romania, Egypt, Tunisia, Taiwan, Mexico, Algeria, Poland, Russia, and Iran. We examined patients and first degree relatives for cytogenetic chromosomal abnormalities, calcium sensing receptor (Ca SR) genes in exons 2 and 3 abnormalities and GNAS1 genes mutations in exons 1, 4, 5, 7, 10, 13. Our syndrome could be a new syndrome in between SH, CKD, and hereditary bone dystrophies. We could not find chromosomal abnormalities in cytogenetics and on Ca SR gene exons 2 and 3. Interestingly, we did find promising missense mutations on the GNAS1 gene exons 1, 4, 10, 4. We finally thought that those catastrophic bone diseases were severe SH and its late treatments due to monetary deficiencies and iatrogenic mistreatments not started as early as possible. This was a sine qua non humanity task. Those brand new striking GNAS1 genes missense mutations have to be considered from now on for the genesis of SS.
The missense mutation of the methylenetetrahydrofolate reductase (MTHFR) gene 677C-->T is associated with modest elevation of homocysteine levels. The bio-ecogenetics factors of total homocysteine levels (tHcy) were investigated in a cross sectional study involving 53 randomly selected healthy Malay subjects. Results indicated that the prevalence of the homozygous 677T/T was 3.8% and heterozygous 677C/T was 17.0%. The levels of tHcy was higher in subjects aged more than 50 years (n = 7, 11.53 +/- 4.45 mumol/l) and in males (10.99 +/- 3.77 mumol/l) especially smoking males (12.19 +/- 3.62 mumol/l). THcy levels were low in the 3 pregnant subjects (4.44 mumol/l, p = 0.036) who were under folate supplementation.
The seizure threshold 2 (SZT2) gene encodes a large, highly conserved protein that is associated with epileptogenesis. In mice, Szt2 is abundantly expressed in the central nervous system. Recently, biallelic SZT2 mutations were found in 7 patients (from 5 families) presenting with epileptic encephalopathy with dysmorphic features and/or non-syndromic intellectual disabilities. In this study, we identified by whole-exome sequencing compound heterozygous SZT2 mutations in 3 patients with early-onset epileptic encephalopathies. Six novel SZT2 mutations were found, including 3 truncating, 1 splice site and 2 missense mutations. The splice-site mutation resulted in skipping of exon 20 and was associated with a premature stop codon. All individuals presented with seizures, severe developmental delay and intellectual disabilities with high variability. Brain MRIs revealed a characteristic thick and short corpus callosum or a persistent cavum septum pellucidum in each of the 2 cases. Interestingly, in the third case, born to consanguineous parents, had unexpected compound heterozygous missense mutations. She showed microcephaly despite the other case and previous ones presenting with macrocephaly, suggesting that SZT2 mutations might affect head size.
The hemolysin transport system was found to mediate the release of cyclodextrin glucanotransferase (CGTase) into the extracellular medium when it was fused to the C-terminal 61 amino acids of HlyA (HlyAs(61)). To produce an improved-secretion variant, the hly components (hlyAs, hlyB and hlyD) were engineered by directed evolution using error-prone PCR. Hly mutants were screened on solid LB-starch plate for halo zone larger than the parent strain. Through screening of about 1 × 10(4) Escherichia coli BL21(DE3) transformants, we succeeded in isolating five mutants that showed a 35-217% increase in the secretion level of CGTase-HlyAs(61) relative to the wild-type strain. The mutation sites of each mutant were located at HlyB, primarily along the transmembrane domain, implying that the corresponding region was important for the improved secretion of the target protein. In this study we describe the finding of novel site(s) of HlyB responsible for enhancing secretion of CGTase in E. coli.
The deduced amino acid sequences of segment A and B of two very virulent Infectious bursal disease virus (vvIBDV) isolates, UPM94/273 and UPM97/61 were compared with 25 other IBDV strains. Twenty amino acid residues (8 in VP1, 5 in VP2, 2 in VP3, 4 in VP4, 1 in VP5) that were common to vvIBDV strains were detected. However, UPM94/273 is an exceptional vvIBDV with usual amino acid substitutions. The differences in the divergence of segment A and B indicated that the vvIBDV strains may have been derived from genetic reassortment of a single ancestral virus or both segments have different ability to undergo genetic variation due to their different functional constraints.