Displaying all 3 publications

Abstract:
Sort:
  1. Lee MK, Manonmani V, Arahata K
    Med J Malaysia, 1993 Mar;48(1):46-50.
    PMID: 8341171
    Duchenne muscular dystrophy (DMD), the commonest X-linked disorder, is a progressive, eventually fatal disease. With the advent of molecular genetics, the Duchenne gene and its protein product, dystrophin, have been characterised. Molecular diagnosis of DMD, identification of carriers and antenatal diagnosis are now possible. We describe here the use, in a Malaysian boy with DMD, of a recent innovation, multiplex polymerase chain reaction (PCR), to obtain molecular diagnosis by detection of dystrophin gene deletions.
    Matched MeSH terms: Muscular Dystrophies/genetics*
  2. Wong KT, Dick D, Anderson JR
    Neuromuscul Disord, 1996 May;6(3):163-6.
    PMID: 8784803
    This report describes a 56-yr-old man with a dominantly inherited disorder affecting four generations and characterized by bilateral ptosis and dysphagia. Muscle biopsy showed only minor light microscopic abnormalities but electron microscopy revealed fibres containing paracrystalline mitochondrial inclusions. Southern analysis of mitochondrial DNA obtained from muscle did not reveal mitochondrial gene deletions. An extensive search eventually identified the characteristic intranuclear filaments of oculopharyngeal muscular dystrophy (OPMD). Abnormal mitochondria are non-specific epiphenomena in OPMD but a potential source of confusion with a late-onset mitochondrial cytopathy. This case further emphasizes the necessity for a diligent search for the diagnostic intranuclear filaments when oculopharyngeal muscular dystrophy is suspected clinically.
    Matched MeSH terms: Muscular Dystrophies/genetics
  3. Ishiura H, Shibata S, Yoshimura J, Suzuki Y, Qu W, Doi K, et al.
    Nat Genet, 2019 08;51(8):1222-1232.
    PMID: 31332380 DOI: 10.1038/s41588-019-0458-z
    Noncoding repeat expansions cause various neuromuscular diseases, including myotonic dystrophies, fragile X tremor/ataxia syndrome, some spinocerebellar ataxias, amyotrophic lateral sclerosis and benign adult familial myoclonic epilepsies. Inspired by the striking similarities in the clinical and neuroimaging findings between neuronal intranuclear inclusion disease (NIID) and fragile X tremor/ataxia syndrome caused by noncoding CGG repeat expansions in FMR1, we directly searched for repeat expansion mutations and identified noncoding CGG repeat expansions in NBPF19 (NOTCH2NLC) as the causative mutations for NIID. Further prompted by the similarities in the clinical and neuroimaging findings with NIID, we identified similar noncoding CGG repeat expansions in two other diseases: oculopharyngeal myopathy with leukoencephalopathy and oculopharyngodistal myopathy, in LOC642361/NUTM2B-AS1 and LRP12, respectively. These findings expand our knowledge of the clinical spectra of diseases caused by expansions of the same repeat motif, and further highlight how directly searching for expanded repeats can help identify mutations underlying diseases.
    Matched MeSH terms: Muscular Dystrophies/genetics*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links