Displaying all 10 publications

Abstract:
Sort:
  1. Shahrizaila N, Yuki N
    J Biomed Biotechnol, 2011;2011:829129.
    PMID: 21197269 DOI: 10.1155/2011/829129
    Molecular mimicry between self and microbial components has been proposed as the pathogenic mechanism of autoimmune diseases, and this hypothesis is proven in Guillain-Barré syndrome. Guillain-Barré syndrome, the most frequent cause of acute neuromuscular paralysis, sometimes occurs after Campylobacter jejuni enteritis. Gangliosides are predominantly cell-surface glycolipids highly expressed in nervous tissue, whilst lipo-oligosaccharides are major components of the Gram-negative bacterium C. jejuni outer membrane. IgG autoantibodies to GM1 ganglioside were found in the sera from patients with Guillain-Barré syndrome. Molecular mimicry was demonstrated between GM1 and lipo-oligosaccharide of C. jejuni isolated from the patients. Disease models by sensitization of rabbits with GM1 and C. jejuni lipo-oligosaccharide were established. Guillain-Barré syndrome provided the first verification that an autoimmune disease is triggered by molecular mimicry. Its disease models are helpful to further understand the molecular pathogenesis as well as to develop new treatments in Guillain-Barré syndrome.
    Matched MeSH terms: Molecular Mimicry*
  2. Cheng HM
    Autoimmunity, 1998;27(2):99-108.
    PMID: 9583741
    Matched MeSH terms: Molecular Mimicry
  3. Izzati Mat Rani NN, Alzubaidi ZM, Azhari H, Mustapa F, Iqbal Mohd Amin MC
    Eur J Pharmacol, 2021 Jun 05;900:174009.
    PMID: 33722591 DOI: 10.1016/j.ejphar.2021.174009
    Over the years, extensive studies on erythrocytes, also known as red blood cells (RBCs), as a mechanism for drug delivery, have been explored mainly because the cell itself is the most abundant and has astonishing properties such as a long life span of 100-120 days, low immunogenicity, good biocompatibility, and flexibility. There are various types of RBC-based systems for drug delivery, including those that are genetically engineered, non-genetically engineered RBCs, as well as employing erythrocyte as nanocarriers for drug loading. Although promising, these systems are still in an early development stage. In this review, we aimed to highlight the development of biomimicking RBC-based drug and vaccine delivery systems, as well as the loading methods with illustrative examples. Drug-erythrocyte associations will also be discussed and highlighted in this review. We have highlighted the possibility of exploiting erythrocytes for the sustained delivery of drugs and vaccines, encapsulation of these biological agents within the erythrocyte or coupling to the surface of carrier erythrocytes, and provided insights on genetically- and non-genetically engineered erythrocytes-based strategies. Erythrocytes have been known as effective cellular carriers for therapeutic moieties for several years. Herein, we outline various loading methods that can be used to reap the benefits of these natural carriers. It has been shown that drugs and vaccines can be delivered via erythrocytes but it is important to select appropriate methods for increasing the drug encapsulated or conjugated on the surface of the erythrocyte membrane. The outlined examples will guide the selection of the most effective method as well as the impact of using erythrocytes as delivery systems for drugs and vaccines.
    Matched MeSH terms: Molecular Mimicry*
  4. Shahrizaila N, Lehmann HC, Kuwabara S
    Lancet, 2021 03 27;397(10280):1214-1228.
    PMID: 33647239 DOI: 10.1016/S0140-6736(21)00517-1
    Guillain-Barré syndrome is the most common cause of acute flaccid paralysis worldwide. Most patients present with an antecedent illness, most commonly upper respiratory tract infection, before the onset of progressive motor weakness. Several microorganisms have been associated with Guillain-Barré syndrome, most notably Campylobacter jejuni, Zika virus, and in 2020, the severe acute respiratory syndrome coronavirus 2. In C jejuni-related Guillain-Barré syndrome, there is good evidence to support an autoantibody-mediated immune process that is triggered by molecular mimicry between structural components of peripheral nerves and the microorganism. Making a diagnosis of so-called classical Guillain-Barré syndrome is straightforward; however, the existing diagnostic criteria have limitations and can result in some variants of the syndrome being missed. Most patients with Guillain-Barré syndrome do well with immunotherapy, but a substantial proportion are left with disability, and death can occur. Results from the International Guillain-Barré Syndrome Outcome Study suggest that geographical variations exist in Guillain-Barré syndrome, including insufficient access to immunotherapy in low-income countries. There is a need to provide improved access to treatment for all patients with Guillain-Barré syndrome, and to develop effective disease-modifying therapies that can limit the extent of nerve injury. Clinical trials are currently underway to investigate some of the potential therapeutic candidates, including complement inhibitors, which, together with emerging data from large international collaborative studies on the syndrome, will contribute substantially to understanding the many facets of this disease.
    Matched MeSH terms: Molecular Mimicry
  5. Tan JK, Then SM, Mazlan M, Raja Abdul Rahman RN, Jamal R, Wan Ngah WZ
    J Nutr Biochem, 2016 May;31:28-37.
    PMID: 27133421 DOI: 10.1016/j.jnutbio.2015.12.019
    Bcl-2 family proteins are crucial regulators of apoptosis. Both pro- and antiapoptotic members exist, and overexpression of the latter facilitates evasion of apoptosis in many cancer types. Bcl-2 homology domain 3 (BH3) mimetics are small molecule inhibitors of antiapoptotic Bcl-2 family members, and these inhibitors are promising anticancer agents. In this study, we report that gamma-tocotrienol (γT3), an isomer of vitamin E, can inhibit Bcl-2 to induce apoptosis. We demonstrate that γT3 induces cell death in human neuroblastoma SH-SY5Y cells by depolarising the mitochondrial membrane potential, enabling release of cytochrome c to the cytosol and increasing the activities of caspases-9 and -3. Treatment of cells with inhibitors of Bax or caspase-9 attenuated the cell death induced by γT3. Simulated docking analysis suggested that γT3 binds at the hydrophobic groove of Bcl-2, while a binding assay showed that γT3 competed with a fluorescent probe to bind at the hydrophobic groove. Our data suggest that γT3 mimics the action of BH3-only protein by binding to the hydrophobic groove of Bcl-2 and inducing apoptosis via the intrinsic pathway in a Bax- and caspase-9-dependent manner.
    Matched MeSH terms: Molecular Mimicry*
  6. Varizhuk AM, Kaluzhny DN, Novikov RA, Chizhov AO, Smirnov IP, Chuvilin AN, et al.
    J Org Chem, 2013 Jun 21;78(12):5964-9.
    PMID: 23724994 DOI: 10.1021/jo400651k
    New oligonucleotide analogues with triazole internucleotide linkages were synthesized, and their hybridization properties were studied. The analogues demonstrated DNA binding affinities similar to those of unmodified oligonucleotides. The modification was shown to protect the oligonucleotides from nuclease hydrolysis. The modified oligonucleotides were tested as PCR primers. Modifications remote from the 3'-terminus were tolerated by polymerases. Our results suggest that these new oligonucleotide analogues are among the most promising triazole DNA mimics characterized to date.
    Matched MeSH terms: Molecular Mimicry
  7. Shahrizaila N, Yuki N
    J Neurol Neurosurg Psychiatry, 2013 May;84(5):576-83.
    PMID: 22984203 DOI: 10.1136/jnnp-2012-302824
    In the 1950s, Bickerstaff and Fisher independently described cases with a unique presentation of ophthalmoplegia and ataxia. The neurological features were typically preceded by an antecedent infection and the majority of patients made a spontaneous recovery. In the cases with Bickerstaff brainstem encephalitis, there was associated altered consciousness and in some, hyperreflexia, in support of a central pathology whereas in Fisher syndrome, patients were areflexic in keeping with a peripheral aetiology. However, both authors recognised certain similarities to Guillain-Barré syndrome such as the presence of peripheral neuropathy and cerebrospinal fluid albuminocytological dissociation. The discovery of immunoglobulin G anti-GQ1b antibodies in patients with Fisher syndrome and later in Bickerstaff brainstem encephalitis was crucial in providing the necessary evidence to conclude that both conditions were in fact part of the same spectrum of disease by virtue of their common clinical and immunological profiles. Following this, other neurological presentations that share anti-GQ1b antibodies emerged in the literature. These include acute ophthalmoparesis and acute ataxic neuropathy, which represent the less extensive spectrum of the disease whereas pharyngeal-cervical-brachial weakness and Fisher syndrome overlap with Guillain-Barré syndrome represent the more extensive end of the spectrum. The conditions can be referred to as the 'anti-GQ1b antibody syndrome'. In this review, we look back at the historical descriptions and describe how our understanding of Fisher syndrome and Bickerstaff brainstem encephalitis has evolved from their initial descriptions more than half a century ago.
    Matched MeSH terms: Molecular Mimicry
  8. Bhattachary-Chatterjee M, Nath Baral R, Chatterjee SK, Das R, Zeytin H, Chakraborty M, et al.
    Cancer Immunol Immunother, 2000 Jun;49(3):133-41.
    PMID: 10881692
    Anti-idiotype (Id) vaccine therapy has been tested and shown to be effective, in several animal models, for triggering the immune system to induce specific and protective immunity against bacterial, viral and parasitic infections. The administration of anti-Id antibodies as surrogate tumor-associated antigens (TAA) also represents another potential application of the concept of the Id network. Limited experience in human trials using anti-Id to stimulate immunity against tumors has shown promising results. In this "counter-point" article, we discuss our own findings showing the potential of anti-Id antibody vaccines to be novel therapeutic approaches to various human cancers and also discuss where anti-Id vaccines may perform better than traditional multiple-epitope antigen vaccines.
    Matched MeSH terms: Molecular Mimicry*
  9. Somasundaram B, Chang C, Fan YY, Lim PY, Cardosa J, Lua L
    Methods, 2016 Feb 15;95:38-45.
    PMID: 26410190 DOI: 10.1016/j.ymeth.2015.09.023
    Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) are two viruses commonly responsible for hand, foot and mouth disease (HFMD) in children. The lack of prophylactic or therapeutic measures against HFMD is a major public health concern. Insect cell-based EV71 and CVA16 virus-like particles (VLPs) are promising vaccine candidates against HFMD and are currently under development. In this paper, the influence of insect cell line, incubation temperature, and serial passaging effect and stability of budded virus (BV) stocks on EV71 and CVA16 VLP production was investigated. Enhanced EV71 and CVA16 VLP production was observed in Sf9 cells compared to High Five™ cells. Lowering the incubation temperature from the standard 27°C to 21°C increased the production of both VLPs in Sf9 cells. Serial passaging of CVA16 BV stocks in cell culture had a detrimental effect on the productivity of the structural proteins and the effect was observed with only 5 passages of BV stocks. A 2.7× higher production yield was achieved with EV71 compared to CVA16. High-resolution asymmetric flow field-flow fractionation couple with multi-angle light scattering (AF4-MALS) was used for the first time to characterize EV71 and CVA16 VLPs, displaying an average root mean square radius of 15±1nm and 15.3±5.8 nm respectively. This study highlights the need for different approaches in the design of production process to develop a bivalent EV71 and CVA16 vaccine.
    Matched MeSH terms: Molecular Mimicry
  10. Shi H, Ishikawa R, Heh CH, Sasaki S, Taniguchi Y
    Int J Mol Sci, 2021 Jan 28;22(3).
    PMID: 33525366 DOI: 10.3390/ijms22031274
    MTH1 is an enzyme that hydrolyzes 8-oxo-dGTP, which is an oxidatively damaged nucleobase, into 8-oxo-dGMP in nucleotide pools to prevent its mis-incorporation into genomic DNA. Selective and potent MTH1-binding molecules have potential as biological tools and drug candidates. We recently developed 8-halogenated 7-deaza-dGTP as an 8-oxo-dGTP mimic and found that it was not hydrolyzed, but inhibited enzyme activity. To further increase MTH1 binding, we herein designed and synthesized 7,8-dihalogenated 7-deaza-dG derivatives. We successfully synthesized multiple derivatives, including substituted nucleosides and nucleotides, using 7-deaza-dG as a starting material. Evaluations of the inhibition of MTH1 activity revealed the strong inhibitory effects on enzyme activity of the 7,8-dihalogenated 7-deaza-dG derivatives, particularly 7,8-dibromo 7-daza-dGTP. Based on the results obtained on kinetic parameters and from computational docking simulating studies, these nucleotide analogs interacted with the active site of MTH1 and competitively inhibited the substrate 8-oxodGTP. Therefore, novel properties of repair enzymes in cells may be elucidated using new compounds.
    Matched MeSH terms: Molecular Mimicry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links