Displaying all 3 publications

Abstract:
Sort:
  1. Xiao Y, Sloan J, Hepworth C, Fradera-Soler M, Mathers A, Thorley R, et al.
    New Phytol, 2023 Jan;237(2):441-453.
    PMID: 36271620 DOI: 10.1111/nph.18564
    Leaf structure plays an important role in photosynthesis. However, the causal relationship and the quantitative importance of any single structural parameter to the overall photosynthetic performance of a leaf remains open to debate. In this paper, we report on a mechanistic model, eLeaf, which successfully captures rice leaf photosynthetic performance under varying environmental conditions of light and CO2 . We developed a 3D reaction-diffusion model for leaf photosynthesis parameterised using a range of imaging data and biochemical measurements from plants grown under ambient and elevated CO2 and then interrogated the model to quantify the importance of these elements. The model successfully captured leaf-level photosynthetic performance in rice. Photosynthetic metabolism underpinned the majority of the increased carbon assimilation rate observed under elevated CO2 levels, with a range of structural elements making positive and negative contributions. Mesophyll porosity could be varied without any major outcome on photosynthetic performance, providing a theoretical underpinning for experimental data. eLeaf allows quantitative analysis of the influence of morphological and biochemical properties on leaf photosynthesis. The analysis highlights a degree of leaf structural plasticity with respect to photosynthesis of significance in the context of attempts to improve crop photosynthesis.
    Matched MeSH terms: Mesophyll Cells/metabolism
  2. Guan Q, Kong W, Zhu D, Zhu W, Dufresne C, Tian J, et al.
    J Proteomics, 2021 01 16;231:104019.
    PMID: 33075550 DOI: 10.1016/j.jprot.2020.104019
    Salinity can induce Mesembryanthemum crystallinum to shift its photosynthesis from C3 to crassulacean acid metabolism (CAM), leading to enhanced plant water use efficiency. Studying how M. crystallinum changes its carbon fixation pathways is important for potential translation into crops and enhancing crop resilience. In this study, we examined proteomic changes in guard cells and mesophyll cells in the course of the C3 to CAM transition. We collected enriched guard cells and mesophyll cells during a short period of transition. A total of 1153 proteins were identified and quantified in the two cell-types. During the transition, proteins in the guard cells and mesophyll cells exhibited differential changes. For example, we observed nocturnal carbon fixation in mesophyll cells and proteins involved in cell growth in the two cell-types. Proteins involved in osmotic adjustment, ion transport, energy metabolism and light response may play important roles in the C3 to CAM transition. Real-time PCR experiments were conducted to determine potential correlations between transcript and protein levels. These results have highlighted potential molecular mechanisms underlying the C3 to CAM transition of guard cells and mesophyll cells of the important facultative CAM plant. BIOLOGICAL SIGNIFICANCE: Fresh water resource for agricultural food production is a global challenge. Nature has evolved crassulacean acid metabolism (CAM) plants with enhanced water use efficiency. Using single cell-type proteomics, this study revealed molecular changes taking place in guard cells and mesophyll cells during the shift of ice plant photosynthesis from C3 to CAM. The results have provided important insights into the CAM transition and may facilitate effort toward enhancing crop resilience for global food security.
    Matched MeSH terms: Mesophyll Cells
  3. Arifullah M, Namsa ND, Mandal M, Chiruvella KK, Vikrama P, Gopal GR
    Asian Pac J Trop Biomed, 2013 Aug;3(8):604-10; discussion 609-10.
    PMID: 23905016 DOI: 10.1016/S2221-1691(13)60123-9
    To evaluate the anti-bacterial and anti-oxidant activity of andrographolide (AND) and echiodinin (ECH) of Andrographis paniculata.
    Matched MeSH terms: Mesophyll Cells/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links