Displaying publications 1 - 20 of 22 in total

Abstract:
Sort:
  1. Ong YP, Ho LN, Ong SA, Banjuraizah J, Ibrahim AH, Thor SH, et al.
    Chemosphere, 2021 Jan;263:128212.
    PMID: 33297171 DOI: 10.1016/j.chemosphere.2020.128212
    A unidirectional flow solar photocatalytic fuel cell (PFC) was successfully developed for the first time to offer alternative for electricity generation and simultaneous wastewater treatment. This study was focused on the synthesis of α-, δ- and β-MnO2 by wet chemical hydrothermal method for application as the cathodic catalyst in PFC. The crystallographic evolution was performed by varying the ratios of KMnO4 to MnSO4. The mechanism of the PFC with the MnO2/C as cathode was also discussed. Results showed that the catalytic activity of MnO2/C cathode was mainly predominated by their crystallographic structures which included Mn-O bond strength and tunnel size, following order of α- > δ- > β-MnO2/C. Interestingly, it was discovered that the specific surface areas (SBET) of different crystal phases did not give an impact on the PFC performance. However, the Pmax could be significantly influenced by the micropore surface area (Smicro) in the comparison among α-MnO2. Furthermore, the morphological transformation carried out by altering the hydrothermal duration demonstrated that the nanowire α-M3(24 h)/C with 1:1 ratio of KMnO4 and MnSO4 yielded excellent PFC performance with a Pmax of 2.8680 μW cm-2 and the lowest Rint of 700 Ω.
    Matched MeSH terms: Manganese Compounds*
  2. Chiam SL, Pung SY, Yeoh FY
    Environ Sci Pollut Res Int, 2020 Feb;27(6):5759-5778.
    PMID: 31933078 DOI: 10.1007/s11356-019-07568-8
    The textile industry consumes a large volume of organic dyes and water. These organic dyes, which remained in the effluents, are usually persistent and difficult to degrade by conventional wastewater treatment techniques. If the wastewater is not treated properly and is discharged into water system, it will cause environmental pollution and risk to living organisms. To mitigate these impacts, the photo-driven catalysis process using semiconductor materials emerges as a promising approach. The semiconductor photocatalysts are able to remove the organic effluent through their mineralization and decolorization abilities. Besides the commonly used titanium dioxide (TiO2), manganese dioxide (MnO2) is a potential photocatalyst for wastewater treatment. MnO2 has a narrow bandgap energy of 1~2 eV. Thus, it possesses high possibility to be driven by visible light and infrared light for dye degradation. This paper reviews the MnO2-based photocatalysts in various aspects, including its fundamental and photocatalytic mechanisms, recent progress in the synthesis of MnO2 nanostructures in particle forms and on supporting systems, and regeneration of photocatalysts for repeated use. In addition, the effect of various factors that could affect the photocatalytic performance of MnO2 nanostructures are discussed, followed by the future prospects of the development of this semiconductor photocatalysts towards commercialization.
    Matched MeSH terms: Manganese Compounds*
  3. Lin KA, Oh WD, Zheng MW, Kwon E, Lee J, Lin JY, et al.
    J Colloid Interface Sci, 2021 Jun 15;592:416-429.
    PMID: 33691223 DOI: 10.1016/j.jcis.2021.02.030
    Aerobic oxidation of 5-Hydroxymethylfurfural (HMF) to 2,5-Diformylfuran (DFF) using O2 gas represents a sustainable approach for valorization of lignocellulosic compounds. As manganese dioxide (MnO2) is validated as a useful oxidation catalyst and many crystalline forms of MnO2 exist, it is critical to explore how the crystalline structures of MnO2 influence their physical/chemical properties, which, in turn, determine catalytic activities of MnO2 crystals for HMF oxidation to DFF. In particular, six MnO2 crystals, α-MnO2, β-MnO2, γ-MnO2, δ-MnO2, ε-MnO2, and λ-MnO2 are prepared and investigated for their catalytic activities for HMF oxidation to DFF. With different morphologies and crystalline structures, these MnO2 crystals possess very distinct surficial chemistry, redox capabilities, and textural properties, making these MnO2 exhibit different catalytic activities towards HMF conversion. Especially, β-MnO2 can produce much higher DFF per surface area than other MnO2 crystals. β-MnO2 could achieve the highest CHMF = 99% and YDFF = 97%, which are much higher than the reported values in literature, possibly because the surficial reactivity of β-MnO2 appears to be highest in comparison to other MnO2 crystals. Especially, β-MnO2 could exhibit YDFF > 90% over 5 cycles of reusability test, and maintain its crystalline structure, revealing its advantageous feature for aerobic oxidation of HMF to DFF. Through this study, the relationship between morphology, surface chemistry, and catalytic activity of MnO2 with different crystal forms is elucidated for providing scientific insights into design, application and development of MnO2-based materials for aerobic oxidation of bio-derived molecules to value-added products.
    Matched MeSH terms: Manganese Compounds
  4. Rizwan Z, Zakaria A, Ghazali MS
    Int J Mol Sci, 2011;12(3):1625-32.
    PMID: 21673911 DOI: 10.3390/ijms12031625
    Photopyroelectric (PPE) spectroscopy is a nondestructive tool that is used to study the optical properties of the ceramics (ZnO + 0.4MnO(2) + 0.4Co(3)O(4) + xV(2)O(5)), x = 0-1 mol%. Wavelength of incident light, modulated at 10 Hz, was in the range of 300-800 nm. PPE spectrum with reference to the doping level and sintering temperature is discussed. Optical energy band-gap (E(g)) was 2.11 eV for 0.3 mol% V(2)O(5) at a sintering temperature of 1025 °C as determined from the plot (ρhυ)(2)versushυ. With a further increase in V(2)O(5), the value of E(g) was found to be 2.59 eV. Steepness factor 'σ(A)' and 'σ(B)', which characterize the slope of exponential optical absorption, is discussed with reference to the variation of E(g). XRD, SEM and EDAX are also used for characterization of the ceramic. For this ceramic, the maximum relative density and grain size was observed to be 91.8% and 9.5 μm, respectively.
    Matched MeSH terms: Manganese Compounds/chemistry*
  5. Mohd Abdah MAA, Azman NHN, Kulandaivalu S, Sulaiman Y
    Sci Rep, 2019 Nov 14;9(1):16782.
    PMID: 31728061 DOI: 10.1038/s41598-019-53421-w
    Asymmetric supercapacitors (ASC) have shown a great potential candidate for high-performance supercapacitor due to their wide operating potential which can remarkably enhance the capacitive behaviour. In present work, a novel positive electrode derived from functionalised carbon nanofibers/poly(3,4-ethylenedioxythiophene)/manganese oxide (f-CNFs/PEDOT/MnO2) was prepared using a multi-step route and activated carbon (AC) was fabricated as a negative electrode for ASC. A uniform distribution of PEDOT and MnO2 on f-CNFs as well as porous granular of AC are well-observed in FESEM. The assembled f-CNFs/PEDOT/MnO2//AC with an operating potential of 1.6 V can achieve a maximum specific capacitance of 537 F/g at a scan rate of 5 mV/s and good cycling stability (81.06% after cycling 8000 times). Furthermore, the as-prepared ASC exhibited reasonably high specific energy of 49.4 Wh/kg and low charge transfer resistance (Rct) of 2.27 Ω, thus, confirming f-CNFs/PEDOT/MnO2//AC as a promising electrode material for the future energy storage system.
    Matched MeSH terms: Manganese Compounds
  6. Basirun WJ, Sookhakian M, Baradaran S, Endut Z, Mahmoudian MR, Ebadi M, et al.
    Sci Rep, 2015;5:9108.
    PMID: 25765731 DOI: 10.1038/srep09108
    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm(-2), in contrast to MnO2, which produced a maximum power density of 9.2 mW cm(-2). The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms.
    Matched MeSH terms: Manganese Compounds
  7. Rusi, Majid SR
    Sci Rep, 2015;5:16195.
    PMID: 26537363 DOI: 10.1038/srep16195
    This paper presents the preparation of in situ electrodeposited rGO/MnO2 nanocomposite as a binder-free electrode for supercapacitor application. The work describes and evaluates the performance of prepared electrode via green and facile electrodeposition technique of in situ rGO/MnO2-glucose carbon nanocomposites. The carbon content in the composite electrode increased after GO and D (+) glucose solution has been added in the deposition electrolyte. This study found that a suitable concentration of D (+) glucose in the deposition electrolyte can slow down the nucleation process of MnO2 particles and lead to uniform and ultrathin nanoflakes structure. The optimize electrode exhibited low transfer resistance and resulted on excellent electrochemical performance in three electrolyte systems viz. Na2SO4, KOH and KOH/K3Fe(CN)6 redox electrolytes. The optimum energy density and power density were 1851 Whkg(-1) and 68 kWkg(-1) at current density of 20 Ag(-1) in mixed KOH/K3Fe(CN)6 electrolyte.
    Matched MeSH terms: Manganese Compounds
  8. Ali MSM, Zainal Z, Hussein MZ, Wahid MH, Bahrudin NN, Muzakir MM, et al.
    Int J Biol Macromol, 2021 Jun 01;180:654-666.
    PMID: 33722623 DOI: 10.1016/j.ijbiomac.2021.03.054
    The present work developed porous carboxymethyl cellulose (CMC) carbon film from lignocellulosic based materials as supercapacitor electrode. Porous CMC carbon films of bamboo (B) and oil palm empty fruit bunch (O) were prepared through simple incipient wetness impregnation method followed by calcination process before incorporation with manganese oxide (Mn2O3). The carbonization produced porous CMC carbon whereby CMCB exhibited higher surface area than CMCO. After Mn2O3 incorporation, the crystallite size of CMCB and CMCO were calculated as 50.09 nm and 42.76 nm, respectively whereas Mn2O3/CMCB and Mn2O3/CMCO composite films were revealed to be 26.71 nm and 35.60 nm in size, respectively. Comparatively, the Mn2O3/CMCB composite film exhibited higher electrochemical performance which was 31.98 mF cm-2 as compared to 24.15 mF cm-2 by Mn2O3/CMCO composite film and both CMC carbon films with fairly stable cycling stability after 1000 charge-discharge cycles. Therefore, it can be highlighted that Mn2O3/CMC composite film as prepared from bamboo and oil palm fruit can potentially become the new electrode materials for supercapacitor application.
    Matched MeSH terms: Manganese Compounds
  9. Lew LC, Choi SB, Tan PL, Liong MT
    J Appl Microbiol, 2014 Mar;116(3):644-53.
    PMID: 24267975 DOI: 10.1111/jam.12399
    The study aimed to evaluate the effects of Mn(2+) and Mg(2+) on lactic acid production using response surface methodology and to further study their effects on interactions between the enzymes and substrates along the hexose monophosphate pathway using a molecular modelling approach.
    Matched MeSH terms: Manganese Compounds/pharmacology*
  10. Natasha AN, Sopyan I, Mel M, Ramesh S
    Med J Malaysia, 2008 Jul;63 Suppl A:85-6.
    PMID: 19024996
    The effect of Manganese (Mn) addition on the Vickers hardness and relative density of nanocrystalline hydroxyapatite (HA) dense bodies were studied. The starting Mn doped HA powders was synthesized via sol-gel method with Mn concentration varies from 2 mol% up to 15 mol% Mn. The Mn doped HA disc samples were prepared by uniaxial pressing at 200MPa and subsequently sintered at 1300 degrees C. Characterization was carried out where appropriate to determine the phases present, bulk density, Vickers hardness of the various content of Mn doped HA dense bodies. The addition of Mn was observed to influence the color appearance of the powders and dense bodies as well. Higher Mn concentration resulted in dark grey powders. It was also found that the hardness and relative density of the material increased as the Mn content increased and influenced by the crystallinity of the prepared Mn doped HA powders.
    Matched MeSH terms: Manganese Compounds/chemistry*
  11. Hashim SP, Sidek HA, Halimah MK, Matori KA, Yusof WM, Zaid MH
    Int J Mol Sci, 2013;14(1):1022-30.
    PMID: 23296276 DOI: 10.3390/ijms14011022
    A systematic set of borotellurite glasses doped with manganese (1-x) [(B(2)O(3))(0.3)(TeO(2))(0.7)]-xMnO, with x = 0.1, 0.2, 0.3 and 0.4 mol%, were successfully synthesized by using a conventional melt and quench-casting technique. In this study, the remelting effect of the glass samples on their microstructure was investigated through density measurement and FT-IR spectra and evaluated by XRD techniques. Initial experimental results from XRD evaluation show that there are two distinct phases of glassy and crystallite microstructure due to the existence of peaks in the sample. The different physical behaviors of the studied glasses were closely related to the concentration of manganese in each phase. FTIR spectra revealed that the addition of manganese oxide contributes the transformation of TeO(4) trigonal bipyramids with bridging oxygen (BO) to TeO(3) trigonal pyramids with non-bridging oxygen (NBO).
    Matched MeSH terms: Manganese Compounds/chemistry
  12. Rusi, Majid SR
    PLoS One, 2016;11(5):e0154566.
    PMID: 27182595 DOI: 10.1371/journal.pone.0154566
    Nanostructured network-like MnO2-NiO composite electrodes were electrodeposited onto stainless steel substrates via different electrodeposition modes, such as chronopotentiometry, chronoamperometry, and cyclic voltammetry, and then subjected to heat treatment at 300°C for metal oxide conversion. X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy were used to study the crystalline natures and morphologies of the deposited films. The electrochemical properties were investigated using cyclic voltammetry and charge/discharge tests. The results revealed that the electrochemical performance of the as-obtained composite electrodes depended on the electrodeposition mode. The electrochemical properties of MnO2-NiO composite electrodes prepared using cyclic voltammetry exhibited the highest capacitance values and were most influenced by the deposition cycle number. The optimum specific capacitance was 3509 Fg-1 with energy and power densities of 1322 Wh kg-1 and 110.5 kW kg-1, respectively, at a current density of 20 Ag-1 in a mixed KOH/K3Fe(CN)6 electrolyte.
    Matched MeSH terms: Manganese Compounds/chemistry*
  13. Rusi, Chan PY, Majid SR
    PLoS One, 2015;10(7):e0129780.
    PMID: 26158447 DOI: 10.1371/journal.pone.0129780
    The composite metal oxide electrode films were fabricated using ex situ electrodeposition method with further heating treatment at 300°C. The obtained composite metal oxide film had a spherical structure with mass loading from 0.13 to 0.21 mg cm(-2). The structure and elements of the composite was investigated using X-ray diffraction (XRD) and energy dispersive X-ray (EDX). The electrochemical performance of different composite metal oxides was studied by cyclic voltammetry (CV) and galvanostatic charge-discharge (CD). As an active electrode material for a supercapacitor, the Co-Mn composite electrode exhibits a specific capacitance of 285 Fg(-1) at current density of 1.85 Ag(-1) in 0.5 M Na2SO4 electrolyte. The best composite electrode, Co-Mn electrode was then further studied in various electrolytes (i.e., 0.5 M KOH and 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolytes). The pseudocapacitive nature of the material of Co-Mn lead to a high specific capacitance of 2.2 x 10(3) Fg(-1) and an energy density of 309 Whkg(-1) in a 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolyte at a current density of 10 Ag(-1). The specific capacitance retention obtained 67% of its initial value after 750 cycles. The results indicate that the ex situ deposited composite metal oxide nanoparticles have promising potential in future practical applications.
    Matched MeSH terms: Manganese Compounds/chemistry*
  14. Nasir AM, Goh PS, Ismail AF
    Chemosphere, 2018 Jun;200:504-512.
    PMID: 29501887 DOI: 10.1016/j.chemosphere.2018.02.126
    A novel hydrous iron-nickel-manganese (HINM) trimetal oxide was successfully fabricated using oxidation and coprecipitation method for metalloid arsenite removal. The atomic ratio of Fe:Ni:Mn for this adsorbent is 3:2:1. HINM adsorbent was identified as an amorphous nanosized adsorbent with particle size ranged from 30 nm to 60 nm meanwhile the total active surface area and pore diameter of HINM area of 195.78 m2/g and 2.43 nm, respectively. Experimental data of arsenite adsorption is best fitted into pseudo-second order and Freundlich isotherm model. The maximum adsorption capacity of arsenite onto HINM was 81.9 mg/g. Thermodynamic study showed that the adsorption of arsenite was a spontaneous and endothermic reaction with enthalpy change of 14.04 kJ/mol and Gibbs energy of -12 to -14 kJ/mol. Zeta potential, thermal gravimetric (TGA) and Fourier transform infrared (FTIR) analysis were applied to elucidate the mechanism of arsenite adsorption by HINM. Mechanism of arsenite adsorption by HINM involved both chemisorption and physisorption based on the electrostatic attraction between arsenite ions and surface charge of HINM. It also involved the hydroxyl substitution by arsenite ions through the formation of inner-sphere complex. Reusability of HINM trimetal oxide was up to 89% after three cycles of testing implied that HINM trimetal oxide is a promising and practical adsorbent for arsenite.
    Matched MeSH terms: Manganese Compounds/chemistry*
  15. Kanagesan S, Aziz SB, Hashim M, Ismail I, Tamilselvan S, Alitheen NB, et al.
    Molecules, 2016 Mar 11;21(3):312.
    PMID: 26978339 DOI: 10.3390/molecules21030312
    Manganese ferrite (MnFe2O4) magnetic nanoparticles were successfully prepared by a sol-gel self-combustion technique using iron nitrate and manganese nitrate, followed by calcination at 150 °C for 24 h. Calcined sample was systematically characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and vibrational sample magnetometry (VSM) in order to identify the crystalline phase, functional group, morphology, particle size, shape and magnetic behavior. It was observed that the resultant spinal ferrites obtained at low temperature exhibit single phase, nanoparticle size and good magnetic behavior. The study results have revealed the existence of a potent dose dependent cytotoxic effect of MnFe2O4 nanoparticles against 4T1 cell lines at varying concentrations with IC50 values of 210, 198 and 171 μg/mL after 24 h, 48 h and 72 h of incubation, respectively. Cells exposed to higher concentrations of nanoparticles showed a progressive increase of apoptotic and necrotic activity. Below 125 μg/mL concentration the nanoparticles were biocompatible with 4T1 cells.
    Matched MeSH terms: Manganese Compounds/administration & dosage; Manganese Compounds/therapeutic use*; Manganese Compounds/chemistry*
  16. Iqbal J, Ansari MO, Numan A, Wageh S, Al-Ghamdi A, Alam MG, et al.
    Polymers (Basel), 2020 Dec 05;12(12).
    PMID: 33291451 DOI: 10.3390/polym12122918
    In this study, ternary composites of polyaniline (PANI) with manganese dioxide (MnO2) nanorods and carbon nanotubes (CNTs) were prepared by employing a hydrothermal methodology and in-situ oxidative polymerization of aniline. The morphological analysis by scanning electron microscopy showed that the MnO2 possessed nanorod like structures in its pristine form, while in the ternary PANI@CNT/MnO2 composite, coating of PANI over CNT/MnO2, rods/tubes were evidently seen. The structural analysis by X-ray diffraction and X-ray photoelectron spectroscopy showed peaks corresponding to MnO2, PANI and CNT, which suggested efficacy of the synthesis methodology. The electrochemical performance in contrast to individual components revealed the enhanced performance of PANI@CNT/MnO2 composite due to the synergistic/additional effect of PANI, CNT and MnO2 compared to pure MnO2, PANI and PANI@CNT. The PANI@CNT/MnO2 ternary composite exhibited an excellent specific capacity of 143.26 C g-1 at a scan rate of 3 mV s-1. The cyclic stability of the supercapattery (PANI@CNT/MnO2/activated carbon)-consisting of a battery type electrode-demonstrated a gradual increase in specific capacity with continuous charge-discharge over ~1000 cycles and showed a cyclic stability of 119% compared to its initial value after 3500 cycles.
    Matched MeSH terms: Manganese Compounds
  17. Kulandaivalu S, Suhaimi N, Sulaiman Y
    Sci Rep, 2019 Mar 20;9(1):4884.
    PMID: 30894621 DOI: 10.1038/s41598-019-41203-3
    A novel layer-by-layer (LBL) based electrode material for supercapacitor consists of polypyrrole/graphene oxide and polypyrrole/manganese oxide (PPy/GO|PPy/MnO2) has prepared by electrochemical deposition. The formation of LBL assembled nanocomposite is confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. The field emission scanning electron microscopy images clearly showed that PPy/MnO2 was uniformly coated on PPy/GO. The PPy/GO|PPy/MnO2 symmetrical supercapacitor has revealed outstanding supercapacitive performance with a high specific capacitance of 786.6 F/g, an exceptionally high specific energy of 52.3 Wh/kg at a specific power of 1392.9 W/kg and preserve a good cycling stability over 1000 cycles. It is certain that PPy/GO|PPy/MnO2 has an extraordinary perspective as an electrode for future supercapacitor developments. This finding contributes to a significant impact on the evolution of electrochemical supercapacitor.
    Matched MeSH terms: Manganese Compounds
  18. Lew LC, Liong MT, Gan CY
    J Appl Microbiol, 2013 Feb;114(2):526-35.
    PMID: 23082775 DOI: 10.1111/jam.12044
    AIMS: The study aimed to optimize the growth and evaluate the production of putative dermal bioactives from Lactobacillus rhamnosus FTDC 8313 using response surface methodology, in the presence of divalent metal ions, namely manganese and magnesium.
    METHODS AND RESULTS: A central composite design matrix (alpha value of ± 1.414) was generated with two independent factors, namely manganese sulphate (MnSO(4) ) and magnesium sulphate (MgSO(4) ). The second-order regression model indicated that the quadratic model was significant (P < 0.01), suggesting that the model accurately represented the data in the experimental region. Three-dimensional response surfaces predicted an optimum point with maximum growth of 10.59 log(10) CFU ml(-1) . The combination that produced the optimum point was 0.80 mg ml(-1) MnSO(4) and 1.09 mg ml(-1) MgSO(4) . A validation experiment was performed, and data obtained showed a deviation of 0.30% from the predicted value, ascertaining the predictions and the reliability of the regression model used. Effects of divalent metal ions on the production of putative dermal bioactives, namely hyaluronic acid, diacetyl, peptidoglycan, lipoteichoic acid and organic acids in the region of optimized growth, were evaluated using 3D response surfaces generated. Evaluation based on the individual and interaction effects showed that both manganese and magnesium played an important role in the production of these putative bioactives.
    CONCLUSIONS: Optimum growth of Lact. rhamnosus FTDC 8313 in reconstituted skimmed milk was achieved at 10.59 log(10) CFU ml(-1) in the presence of MnSO(4) (0.80 mg ml(-1) ) and MgSO(4) (1.09 mg ml(-1) ). Production of putative dermal bioactive and inhibitory compounds including hyaluronic acid, diacetyl, peptidoglycan, lipoteichoic acid and organic acids at the regions of optimized growth showed potential dermal applications.
    SIGNIFICANT AND IMPACT OF THE STUDY: This research can serve as a fundamental study to further evaluate the potential of Lactobacillus strains in non-gut-related roles such as dermal applications.
    Matched MeSH terms: Manganese Compounds/pharmacology*
  19. Birma Bwatanglang I, Mohammad F, Yusof NA, Elyani Mohammed N, Abu N, Alitheen NB, et al.
    J Mater Sci Mater Med, 2017 Aug 08;28(9):138.
    PMID: 28791524 DOI: 10.1007/s10856-017-5949-9
    5-Fluororaucil (5-FU) as anti-cancer drug was reported to induce thymidine synthase (TS) overexpression and cancer cell resistance. To improve its therapeutic efficacy and selective targeting, here we developed a targeted delivery system mediated by the active ligand-folate receptor chemistry to deliver the 5-FU drug selectively into the tumor microenvironment. The preparation was achieved by exploring chitosan (CS)-biopolymer based system with folic acid (FA)-conjugation. The 5-FU@FACS-Mn:ZnS quantum dots (QDs) based on the histological assessment conducted in the 4T1 challenged mice showed an improved tumor remission in the liver, spleen and lungs. The 5-FU@FACS-Mn:ZnS composite induced anti-proliferative properties in these organs as compared to the free 5-FU drug. Unlike the 5-FU@FACS-Mn:ZnS treated groups which showed some specific morphological changes such as cell shrinkage without obvious presence of adipocytes, the excised section of the tumor in the untreated control group and the free 5-FU drug treated group showed necrotic and degenerated cells; these cells are multifocally distributed in the tumor mass with evidence of widely distributed adipocytes within the tumor mass. These findings suggest that the 5-FU@FACS-Mn:ZnS composite has a superior role during the induction of apoptosis in the 4T1 cells as compared to the free 5-FU drug treated groups. The results of the study therefore suggest that the impregnation of 5-FU anti-cancer drug within the FACS-Mn:ZnS system significantly improves its selective targeting efficacy, in addition to improving the anti-proliferative properties and attenuate possible tumor resistances to the 5-FU drug. The work discusses about the anti-metastatic effects of folic acid-bound 5-Fluororacil loaded Mn:ZnS quantum dots towards 4T1 cell line proliferation in mice based on the histological analysis.
    Matched MeSH terms: Manganese Compounds/chemistry*
  20. Ashraf MA, Peng WX, Fakhri A, Hosseini M, Kamyab H, Chelliapan S
    J. Photochem. Photobiol. B, Biol., 2019 Sep;198:111579.
    PMID: 31401316 DOI: 10.1016/j.jphotobiol.2019.111579
    The sol-gel/ultrasonically rout produced the novel MnS2-SiO2 nano-hetero-photocatalysts with the various ratio of MnS2. Prepared nano-catalyst were investigated in the photo-degradation of methylene blue under UV light illumination. Structural and optical attributes of as-prepared nano-catalysts were evaluated by X-ray diffraction and photoelectron spectroscopy. The morphological were studied by scanning electron microscopy-EDS, and dynamic light scattering. The diffuse reflectance spectroscopy was applied to examine the band gap energy. The Eg values of SiO2, MnS2-SiO2-0, MnS2-SiO2-1, and MnS2-SiO2-2 nanocomposites are 6.51, 3.85, 3.17, and 2.67 eV, respectively. The particle size of the SiO2 and MnS2-SiO2-1 nanocomposites were 100.0, and 65.0 nm, respectively. The crystallite size values of MnS2-SiO2-1 were 52.21 nm, and 2.9 eV, respectively. MnS2-SiO2 nano-photocatalyst was recognized as the optimum sample by degrading 96.1% of methylene blue from water. Moreover, the influence of pH of the solution, and contact time as decisive factors on the photo-degradation activity were investigated in this project. The optimum data for pH and time were found 9 and 60 min, respectively. The photo-degradation capacity of MnS2-SiO2-2 is improved (96.1%) due to the low band gap was found from UV-vis DRS. The antimicrobial data of MnS2-SiO2 were studied and demonstrated that the MnS2-SiO2 has fungicidal and bactericidal attributes.
    Matched MeSH terms: Manganese Compounds/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links