Displaying all 8 publications

Abstract:
Sort:
  1. Wong TW, Wahab S, Anthony Y
    Drug Dev Ind Pharm, 2007 Jul;33(7):737-46.
    PMID: 17654022
    The drug release behavior of beads made of poly(methyl vinyl ether-co-maleic acid) was investigated with respect to the influence of microwave irradiation. The beads were prepared by an extrusion method with sodium diclofenac as a model water-soluble drug. The beads were subjected to microwave irradiation at 80 W for 5 and 20 min, and at 300 W for 1 min 20 s and 5 min 20 s. The profiles of drug dissolution, drug content, drug-polymer interaction, and polymer-polymer interaction were determined by using dissolution testing, drug content assay, differential scanning calorimetry, and Fourier transform infra-red spectroscopy. Keeping the level of supplied irradiation energy identical, treatment of beads by microwave at varying intensities of irradiation did not bring about similar drug release profiles. The extent and rate of drug released from beads were markedly enhanced through treating the samples by microwave at 80 W as a result of loss of polymer-polymer interaction via the (CH(2))(n) moiety, but decreased upon treating the beads by microwave at 300 W following polymer-polymer interaction via the O-H, COOH, and COO(-) moieties as well as drug-polymer interaction via the N-H, O-H, COO(-), and C-O moieties. The beads treated by microwave at 300 W exhibited a higher level of drug release retardation capacity than those that were treated by microwave at 80 W in spite of polymer-polymer interaction via the (CH(2))(n) moiety was similarly reduced in the matrix. The mechanism of drug release of both microwave-treated and untreated beads tended to follow zero order kinetics. The drug release was markedly governed by the state of polymer relaxation of the matrix and was in turn affected by the state of polymer-polymer and/or drug-polymer interaction in beads.
    Matched MeSH terms: Maleates/radiation effects; Maleates/chemistry*
  2. Wong TW, Wahab S, Anthony Y
    Int J Pharm, 2008 Jun 5;357(1-2):154-63.
    PMID: 18329203 DOI: 10.1016/j.ijpharm.2008.01.047
    The drug release characteristics of beads made of poly(methyl vinyl ether-co-maleic acid) using Zn2+ as the crosslinking agent were investigated with respect to the influence of microwave irradiation. The beads were prepared by an extrusion method with sodium diclofenac as a model water-soluble drug. They were subjected to microwave irradiation at 80W for 5 and 20 min, and at 300W for 1 min 20s and 5 min 20s. The profiles of drug dissolution, drug content, drug-polymer interaction and polymer-polymer interaction were determined by dissolution testing, drug content assay, differential scanning calorimetry and Fourier transform infrared spectroscopy. Treatment of beads by microwave at varying intensities of irradiation can aid to retard the drug release with a greater reduction extent through treating the beads for a longer duration of irradiation. The treatment of beads by microwave induced the formation of multiple polymeric domains of great strength and extent of polymer-polymer and drug-polymer interaction. The release of drug from beads was retarded via the interplay of O-H, N-H, C-H, (CH2)n and C-O functional groups of these domains, and was mainly governed by the state of polymer relaxation of the matrix unlike that of the untreated beads of which the release of drug was effected via drug diffusion and polymer relaxation. In comparison to Ca2+ crosslinked matrix which exhibited inconsistent drug release retardation behavior under the influence of microwave, the extent and rate of drug released from the Zn2+ crosslinked beads were greatly reduced by microwave and the release of drug from these beads was consistently retarded in response to both high and low intensity microwaves.
    Matched MeSH terms: Maleates/radiation effects*; Maleates/chemistry*
  3. Gupta S, Parolia A, Jain A, Kundabala M, Mohan M, de Moraes Porto IC
    J Indian Soc Pedod Prev Dent, 2015 Jul-Sep;33(3):245-9.
    PMID: 26156281 DOI: 10.4103/0970-4388.160402
    The aim of this in vitro study was an attempt to investigate the effect of different surface treatments on the bond strength between pre-existing composite and repair composite resin.
    Matched MeSH terms: Maleates/chemistry
  4. Jamaluddin A, Pearson GJ
    Asian J Aesthet Dent, 1993 Jan;1(1):19-23.
    PMID: 8149147
    This study assessed the nature of the adhesion in repaired glass-ionomer restorative materials. Two chemically different glass-ionomer cements, Ketac Fil and Chemfil II Cap, and three different methods of conditioning the surface for repair were employed. Specimens of each material were prepared and the cut surfaces were then treated with either 35% phosphoric acid, 35% polyacrylic acid or a combination of phosphoric acid followed by polyacrylic acid. Freshly mixed material was injected against these treated surfaces and allowed to set under simulated intraoral conditions. The specimens were tested to failure in flexion after seven days storage. Assessment of the fractured surfaces was then carried out using the scanning electron microscope. The results showed the occurrence of both adhesive and cohesive failure.
    Matched MeSH terms: Maleates/chemistry
  5. Mostafa AA, Elshikh MS, Al-Askar AA, Hadibarata T, Yuniarto A, Syafiuddin A
    Bioprocess Biosyst Eng, 2019 Sep;42(9):1483-1494.
    PMID: 31076865 DOI: 10.1007/s00449-019-02144-3
    Due to environmental concern, the research to date has tended to focus on how textile dye removal can be carried out in a greener manner. Therefore, this study aims to evaluate the decolorization and biotransformation pathway of Mordant Orange-1 (MO-1) by Cylindrocephalum aurelium RY06 (C. aurelium RY06). Decolorization study was conducted in a batch experiment including the investigation of the effects of physio-chemical parameters. Enzymatic activity of C. aurelium RY06 during the decolorization was also investigated. Moreover, transformation and biodegradation of MO-1 by C. aurelium RY06 were observed using the gas chromatography-mass spectrometry. Manganese peroxidase, lignin peroxidase, laccase, 1,2-dioxygenase, and 2,3-dioxygenase enzymes were detected during the decolorization. In general, the present work concluded that the MO-1 was successfully degraded by C. aurelium RY06 and transformed to be maleic acid and to be isophtalic acid.
    Matched MeSH terms: Maleates/metabolism
  6. Chieng ZH, Mohyaldinn ME, Hassan AM, Bruining H
    Polymers (Basel), 2020 Jun 30;12(7).
    PMID: 32629958 DOI: 10.3390/polym12071470
    In hydraulic fracturing, fracturing fluids are used to create fractures in a hydrocarbon reservoir throughout transported proppant into the fractures. The application of many fields proves that conventional fracturing fluid has the disadvantages of residue(s), which causes serious clogging of the reservoir's formations and, thus, leads to reduce the permeability in these hydrocarbon reservoirs. The development of clean (and cost-effective) fracturing fluid is a main driver of the hydraulic fracturing process. Presently, viscoelastic surfactant (VES)-fluid is one of the most widely used fracturing fluids in the hydraulic fracturing development of unconventional reservoirs, due to its non-residue(s) characteristics. However, conventional single-chain VES-fluid has a low temperature and shear resistance. In this study, two modified VES-fluid are developed as new thickening fracturing fluids, which consist of more single-chain coupled by hydrotropes (i.e., ionic organic salts) through non-covalent interaction. This new development is achieved by the formulation of mixing long chain cationic surfactant cetyltrimethylammonium bromide (CTAB) with organic acids, which are citric acid (CA) and maleic acid (MA) at a molar ratio of (3:1) and (2:1), respectively. As an innovative approach CTAB and CA are combined to obtain a solution (i.e., CTAB-based VES-fluid) with optimal properties for fracturing and this behaviour of the CTAB-based VES-fluid is experimentally corroborated. A rheometer was used to evaluate the visco-elasticity and shear rate & temperature resistance, while sand-carrying suspension capability was investigated by measuring the settling velocity of the transported proppant in the fluid. Moreover, the gel breaking capability was investigated by determining the viscosity of broken VES-fluid after mixing with ethanol, and the degree of core damage (i.e., permeability performance) caused by VES-fluid was evaluated while using core-flooding test. The experimental results show that, at pH-value ( 6.17 ), 30 (mM) VES-fluid (i.e., CTAB-CA) possesses the highest visco-elasticity as the apparent viscosity at zero shear-rate reached nearly to 10 6 (mPa·s). Moreover, the apparent viscosity of the 30 (mM) CTAB-CA VES-fluid remains 60 (mPa·s) at (90 ∘ C) and 170 (s - 1 ) after shearing for 2-h, indicating that CTAB-CA fluid has excellent temperature and shear resistance. Furthermore, excellent sand suspension and gel breaking ability of 30 (mM) CTAB-CA VES-fluid at 90 ( ∘ C) was shown; as the sand suspension velocity is 1.67 (mm/s) and complete gel breaking was achieved within 2 h after mixing with the ethanol at the ratio of 10:1. The core flooding experiments indicate that the core damage rate caused by the CTAB-CA VES-fluid is ( 7.99 % ), which indicate that it does not cause much damage. Based on the experimental results, it is expected that CTAB-CA VES-fluid under high-temperature will make the proposed new VES-fluid an attractive thickening fracturing fluid.
    Matched MeSH terms: Maleates
  7. Chia MSY, Parolia A, Lim BSH, Jayaraman J, Porto ICCM
    Restor Dent Endod, 2020 Aug;45(3):e28.
    PMID: 32839709 DOI: 10.5395/rde.2020.45.e28
    Objectives: To evaluate the outcome of in vitro studies comparing the effectiveness of QMix irrigant in removing the smear layer in the root canal system compared with other irrigants.

    Materials and Methods: The research question was developed by using Population, Intervention, Comparison, Outcome and Study design framework. Literature search was performed using 3 electronic databases PubMed, Scopus, and EBSCOhost until October 2019. Two reviewers were independently involved in the selection of the articles and data extraction process. Risk of bias of the studies was independently appraised using revised Cochrane Risk of Bias tool (RoB 2.0) based on 5 domains.

    Results: Thirteen studies fulfilled the selection criteria. The overall risk of bias was moderate. QMix was found to have better smear layer removal ability than mixture of tetracycline isonomer, an acid and a detergent (MTAD), sodium hypochlorite (NaOCl), and phytic acid. The efficacy was less effective than 7% maleic acid and 10% citric acid. No conclusive results could be drawn between QMix and 17% ethylenediaminetetraacetic acid due to conflicting results. QMix was more effective when used for 3 minutes than 1 minute.

    Conclusions: QMix has better smear layer removal ability compared to MTAD, NaOCl, Tubulicid Plus, and Phytic acid. In order to remove the smear layer more effectively with QMix, it is recommended to use it for a longer duration.

    Matched MeSH terms: Maleates
  8. Koriem KM, Arbid MS, El-Gendy NF
    Toxicol. Mech. Methods, 2010 Nov;20(9):579-86.
    PMID: 20883155 DOI: 10.3109/15376516.2010.518171
    The protective role of Tropaelum majus (T.majus) methyl alcohol extract and vitamin E in the case of toxic effect induced by diethyl maleate was evaluated. Forty-two male albino rats were divided into seven groups of six rats each for 15 days. Group 1: normal control group. Group 2: taken daily oral dose of paraffin oil (0.25ml/100g b.wt rat). Group 3: received daily oral dose of vitamin E (100mg/kg b.wt rat). Group 4: taken daily oral dose of 10% of the LD50 of T.majus methyl alcohol extract. Groups 5–7: injected intra-peritoneally with diethyl maleate (5 μl/100g b.wt rat) but groups 6 and 7 received a daily oral dose of either vitamin E or 10% of the LD50 of T.majus methyl alcohol extract 1h prior to diethyl maleate injection. The present results revealed that diethyl maleate induced serum aspartate and alanine aminotransferases enzymes activities decreased in serum, but their activities in the hepatic tissue showed an increase. Glutathione and glucose-6-phosphate dehydrogenase levels showed a decrease, but thiobarbituric acid reactive substances level showed an increase in both serum and liver tissue. Serum and liver proteins decreased in serum and liver tissue. A significant decrease in blood parameters (hemoglobin, hematocrit, as well as red and white blood cells) and serum glucose occurred. Histopathological results showed that diethyl maleate induced a hoop of edema in the hepatic periportal area; while T.majus methyl alcohol extract or vitamin E prior to diethyl maleate injection shift blood and liver toxicity induced by diethyl maleate towards normal values and preserved hepatic lobular architecture. In conclusion, pre-treatment with either T.majus methyl alcohol extract or vitamin E provide protection against blood and liver toxicity induced by diethyl maleate in rats, these results were confirmed by histological examinations.
    Matched MeSH terms: Maleates/toxicity
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links