Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Thomas V, Leng YP
    Med J Malaysia, 1977 Mar;31(3):204-7.
    PMID: 333246
    Matched MeSH terms: Malaria/blood
  2. Lewis GE, Miller LH, Ibrahim L, Wong PW, McGinniss M, Ooi WL
    Trans R Soc Trop Med Hyg, 1988;82(3):509-10.
    PMID: 3068862
    Duffy phenotypes were determined for 314 Malaysian Orang Asli. The most common gene, Fya, was present in 313; there were no Duffy negative individuals. A previous study found evidence of Plasmodium vivax infection in 5 of 7 Orang Asli reported to be of the Duffy negative genotype. In this study, 5 of the 7 previously tested Orang Asli were retested in triplicate, and each of the 5 was found to be Duffy positive, having the Fya gene and a phenotype of Fy (a + b-).
    Matched MeSH terms: Malaria/blood*
  3. Lee WC, Russell B, Lau YL, Fong MY, Chu C, Sriprawat K, et al.
    PLoS One, 2013;8(4):e60303.
    PMID: 23565221 DOI: 10.1371/journal.pone.0060303
    The quantity of circulating reticulocytes is an important indicator of erythropoietic activity in response to a wide range of haematological pathologies. While most modern laboratories use flow cytometry to quantify reticulocytes, most field laboratories still rely on 'subvital' staining. The specialist 'subvital' stains, New Methylene Blue (NMB) and Brilliant Crésyl Blue are often difficult to procure, toxic, and show inconsistencies between batches. Here we demonstrate the utility of Giemsa's stain (commonly used microbiology and parasitology) in a 'subvital' manner to provide an accurate method to visualize and count reticulocytes in blood samples from normal and malaria-infected individuals.
    Matched MeSH terms: Malaria/blood*
  4. Warren M, Cheong WH, Fredericks HK, Coatney GR
    Am J Trop Med Hyg, 1970 May;19(3):383-93.
    PMID: 4392806
    Matched MeSH terms: Malaria/blood
  5. Schmidt-Ullrich R, Wallach DF, Lightholder J
    J. Exp. Med., 1979 Jul 01;150(1):86-99.
    PMID: 87490
    Purified schizonts (6--10 nuclei) and membranes of schizont-infected erythrocytes from the Malaysian and Philippine strain of Plasmodium knowlesi are analyzed immunochemically using immunoglobulin of rhesus monkey hyperimmune sera against schizonts and of sera from naturally immune monkeys. The anti-schizont Ig identifies less than 20 immune components in Triton X-100-solubilized schizonts and membranes of infected cells. Of these antigens, 9 (component 1, 3, 4, 5, 6, 10, 11, 18, and 20) are common to parasites and membranes of infected erythrocytes, and 12 (2A,B, 6, 8, 9, 12, 13p, 14, 16A,B, 19 A,Bp, 21, 22p, and 23) are predominantly found in the parasite; 4 components (13i, 19A,Bi, 22A, B, and 24) are unique to the membrane of infected erythrocytes. Only three parasite-specific components (1, 13, and 19) are exposed on the surface of parasitized erythrocytes as revealed by both lactoperoxidase-catalyzed radioiodination and extensive absorption of anti-schizont Ig using intact infected erythrocytes. Two plasmodium-specific antigens (1 and 13) on the surface of infected erythrocytes are recognized by sera of rhesus monkeys rendered naturally immune against P. knowlesi infections and, therefore, represent antigens in vivo. Analyses of schizonts and membranes of parasitized erythrocytes of the two different strains of P. knowlesi yields only some minor quantitative, but no qualitative differences when analyzed with both types of antisera. Importantly, components 1 and 13 appear identical in both strains.
    Matched MeSH terms: Malaria/blood*
  6. Arnold JD, Balcerzak SP, Martin DC
    Mil Med, 1969 Sep;134(10):962-71.
    PMID: 4987072
    Matched MeSH terms: Malaria/blood
  7. Abdul-Nasir AS, Mashor MY, Mohamed Z
    Comput Math Methods Med, 2012;2012:637360.
    PMID: 23082089 DOI: 10.1155/2012/637360
    Malaria is one of the serious global health problem, causing widespread sufferings and deaths in various parts of the world. With the large number of cases diagnosed over the year, early detection and accurate diagnosis which facilitates prompt treatment is an essential requirement to control malaria. For centuries now, manual microscopic examination of blood slide remains the gold standard for malaria diagnosis. However, low contrast of the malaria and variable smears quality are some factors that may influence the accuracy of interpretation by microbiologists. In order to reduce this problem, this paper aims to investigate the performance of the proposed contrast enhancement techniques namely, modified global and modified linear contrast stretching as well as the conventional global and linear contrast stretching that have been applied on malaria images of P. vivax species. The results show that the proposed modified global and modified linear contrast stretching techniques have successfully increased the contrast of the parasites and the infected red blood cells compared to the conventional global and linear contrast stretching. Hence, the resultant images would become useful to microbiologists for identification of various stages and species of malaria.
    Matched MeSH terms: Malaria/blood*
  8. Mathews HM, Dondero TJ
    Am J Trop Med Hyg, 1982 Jan;31(1):14-8.
    PMID: 7036766
    The indirect hemagglutination test was used to measure malaria antibody levels in residents of an endemic area of Malaysia. Blood specimens were collected at 4-week intervals for a year. Seropositivity rates increased with age and number of episodes of malaria in young children. Although antibody levels were variable, titers tended to rise with parasitemia and fall in the absence of detected parasites. In general, the serologic indices tended to reflect the parasitologic findings.
    Matched MeSH terms: Malaria/blood
  9. Mathews HM, Dondero TJ
    Am J Trop Med Hyg, 1982 Jan;31(1):19-23.
    PMID: 7036769
    A cohort of 62 persons living in a malaria-endemic area was examined by serology and by blood film 14 times over a 56-week period. Serologic responses (indirect hemagglutination test) of the group as a whole reflected the malaria transmission as determined by blood slide examination. The serologic responses of individuals showed titer changes that were not always consistent with blood slide results. The use of chloroquine may have modified the host's immune response.
    Matched MeSH terms: Malaria/blood
  10. Jones CR, Ovenell SM
    J. Chromatogr., 1979 Jun 11;163(2):179-85.
    PMID: 541369
    A high-performance liquid chromatographic method was developed to enable dapsone, monoacetyl dapsone and pyrimethamine to be measured simultaneously in plasma samples from volunteers in England and Malaysia who had been dosed with Maloprim. Mean half-lives of 25 and 80 h were calculated for dapsone and pyrimethamine, respectively, but there was wide individual variation. All subjects were found to be classifiable as "slow acetylators".
    Matched MeSH terms: Malaria/blood
  11. Barber BE, Russell B, Grigg MJ, Zhang R, William T, Amir A, et al.
    Blood Adv, 2018 02 27;2(4):433-443.
    PMID: 29487058 DOI: 10.1182/bloodadvances.2017013730
    The simian parasite Plasmodium knowlesi can cause severe and fatal human malaria. However, little is known about the pathogenesis of this disease. In falciparum malaria, reduced red blood cell deformability (RBC-D) contributes to microvascular obstruction and impaired organ perfusion. In P knowlesi infection, impaired microcirculatory flow has been observed in Macaca mulatta (rhesus macaques), unnatural hosts who develop severe and fatal disease. However, RBC-D has not been measured in human infection or in the natural host M fascicularis (long-tailed macaques). Using ektacytometry, we measured RBC-D in adults with severe and non-severe knowlesi and falciparum malaria and in healthy controls. In addition, we used micropipette aspiration to determine the relative stiffness of infected RBCs (iRBCs) and uninfected RBCs (uRBCs) in P knowlesi-infected humans and M fascicularis Ektacytometry demonstrated that RBC-D overall was reduced in human knowlesi malaria in proportion to disease severity, and in severe knowlesi malaria, it was comparable to that of severe falciparum malaria. RBC-D correlated inversely with parasitemia and lactate in knowlesi malaria and HRP2 in falciparum malaria, and it correlated with hemoglobin nadir in knowlesi malaria. Micropipette aspiration confirmed that in humans, P knowlesi infection increased stiffness of both iRBCs and uRBCs, with the latter mostly the result of echinocytosis. In contrast, in the natural host M fascicularis, echinocyte formation was not observed, and the RBC-D of uRBCs was unaffected. In unnatural primate hosts of P knowlesi, including humans, reduced deformability of iRBCs and uRBCs may represent a key pathogenic mechanism leading to microvascular accumulation, impaired organ perfusion, and anemia.
    Matched MeSH terms: Malaria/blood*
  12. Salman S, Bendel D, Lee TC, Templeton D, Davis TM
    Antimicrob Agents Chemother, 2015;59(6):3208-15.
    PMID: 25801552 DOI: 10.1128/AAC.05014-14
    The pharmacokinetics of sublingual artemether (ArTiMist) was investigated in 91 young African children with severe malaria or who could not tolerate oral antimalarial therapy. Each received 3.0 mg/kg of body weight of artemether at 0, 8, 24, 36, 48, and 60 h or until the initiation of oral treatment. Few blood samples were drawn postdose. Plasma artemether and dihydroartemisinin (DHA) levels were measured using liquid chromatography-mass spectrometry, and the data were analyzed using established population compartmental pharmacokinetic models. Parasite clearance was prompt (median parasite clearance time, 24 h), and there were no serious adverse events. Consistent with studies in healthy adults (S. Salman, D. Bendel, T. C. Lee, D. Templeton, and T. M. E. Davis, Antimicrob Agents Chemother 59:3197-3207, 2015, http://dx.doi.org/10.1128/AAC.05013-14), the absorption of sublingual artemether was biphasic, and multiple dosing was associated with the autoinduction of the metabolism of artemether to DHA (which itself has potent antimalarial activity). In contrast to studies using healthy volunteers, pharmacokinetic modeling indicated that the first absorption phase did not avoid first-pass metabolism, suggesting that the drug is transferred to the upper intestine through postdose fluid/food intake. Simulations using the present data and those from an earlier study in older Melanesian children with uncomplicated malaria treated with artemether-lumefantrine tablets suggested that the bioavailability of sublingual artemether was at least equivalent to that after conventional oral artemether-lumefantrine (median [interquartile range] areas under the concentration-time curve for artemether, 3,403 [2,471 to 4,771] versus 3,063 [2,358 to 4,514] μg · h/liter, respectively; and for DHA, 2,958 [2,146 to 4,278] versus 2,839 [1,812 to 3,488] μg · h/liter, respectively; P ≥ 0.42). These findings suggest that sublingual artemether could be used as prereferral treatment for sick children before transfer for definitive management of severe or moderately severe malaria.
    Matched MeSH terms: Malaria/blood
  13. Liew J, Amir A, Chen Y, Fong MY, Razali R, Lau YL
    Clin Chim Acta, 2015 Aug 25;448:33-8.
    PMID: 26086445 DOI: 10.1016/j.cca.2015.06.006
    Autoantibodies or antibodies against self-antigens are produced either during physiological processes to maintain homeostasis or pathological process such as trauma and infection. Infection with parasites including Plasmodium has been shown to generally induce elevated self-antibody (autoantibody) levels. Plasmodium knowlesi is increasingly recognized as one of the most important emerging human malaria in Southeast Asia that can cause severe infection leading to mortality. Autoimmune-like phenomena have been hypothesized to play a role in the protective immune responses in malaria infection.
    Matched MeSH terms: Malaria/blood
  14. Rieckmann KH, McNamara JV, Kass L, Powell RD
    Mil Med, 1969 Sep;134(10):802-19.
    PMID: 4987059
    Matched MeSH terms: Malaria/blood*
  15. Josephine FP, Nissapatorn V
    PMID: 16438183
    This retrospective and descriptive study was carried out in the University of Malaya Medical Center (UMMC) from January to September, 2004. This study aimed to evaluate the diagnostic utility of the Cell-Dyn 4000 hematology analyzer's depolarization analysis and to determine the sensitivity and specificity of this technique in the context of malaria diagnosis. A total of 889 cases presenting with pyrexia of unknown origin or clinically suspected of malaria were examined. Sixteen of these blood samples were found to be positive; 12 for P. vivax, 3 for P. malariae, and 1 for P. falciparum by peripheral blood smear as the standard technique for parasite detection and species identification. Demographic characteristics showed that the majority of patients were in the age range of 20-57 with a mean of 35.9 (+/- SD) 11.4 years, and male foreign workers. Of these, 16 positive blood samples were also processed by Cell-Dyne 4000 analyzer in the normal complete blood count (CBC) operational mode. Malaria parasites produce hemozoin, which depolarizes light and this allows the automated detection of malaria during routine complete blood count analysis with the Abbot Cell-Dyn CD4000 instrument. The white blood cell (WBC) differential plots of all malaria positive samples showed abnormal depolarization events in the NEU-EOS and EOS I plots. This was not seen in the negative samples. In 12 patients with P. vivax infection, a cluster pattern in the Neu-EOS and EOS I plots was observed, and appeared color-coded green or black. In 3 patients with P. malariae infection, few random depolarization events in the NEU-EOS and EOS I plots were seen, and appeared color-coded green, black or blue. While in the patient with P. falciparum infection, the sample was color-coded green with a few random purple depolarizing events in the NEU-EOS and EOS I plots. This study confirms that automated depolarization analysis is a highly sensitive and specific method to diagnose whether or not a patient has malaria. This automated approach may prove to be particularly useful in situations where there is little or no clinical suspicion of malaria.
    Matched MeSH terms: Malaria/blood
  16. Rain AN, Roxas CC, Mak JW
    PMID: 8266248
    Matched MeSH terms: Malaria/blood*
  17. Chen Y, Chan CK, Kerishnan JP, Lau YL, Wong YL, Gopinath SC
    BMC Infect Dis, 2015;15:49.
    PMID: 25656928 DOI: 10.1186/s12879-015-0786-2
    Plasmodium knowlesi was identified as the fifth major malaria parasite in humans. It presents severe clinical symptoms and leads to mortality as a result of hyperparasitemia in a short period of time. This study aimed to improve the current understanding of P. knowlesi and identify potential biomarkers for knowlesi malaria.
    Matched MeSH terms: Malaria/blood
  18. Vythilingam I, Sidavong B, Chan ST, Phonemixay T, Vanisaveth V, Sisoulad P, et al.
    Trans R Soc Trop Med Hyg, 2005 Nov;99(11):833-9.
    PMID: 16112154
    Surveys were conducted in malaria-endemic villages in the southern province of Attapeu, Lao PDR during various seasons over a 3-year period. All-night mosquito landing collections, blood surveys and a case-control study were conducted. Plasmodium falciparum was the predominant species, and slide positivity rates were higher during the transition/dry season compared with the wet season. Anopheles dirus A was found to be the primary vector, and sporozoite rates were highest during the transition/dry season. Anopheles dirus was found to be endophagic and endophilic. Not using insecticide-treated bed nets, houses close to breeding sites and sleeping away from home were risk factors associated with malaria.
    Matched MeSH terms: Malaria/blood
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links