Displaying all 6 publications

Abstract:
Sort:
  1. Pollock NR, Farias TDJ, Kichula KM, Sauter J, Scholz S, Nii-Trebi NI, et al.
    HLA, 2024 Jun;103(6):e15568.
    PMID: 38923286 DOI: 10.1111/tan.15568
    A fundamental endeavor of the International Histocompatibility and Immunogenetics Workshop (IHIW) was assembling a collection of DNA samples homozygous through the MHC genomic region. This collection proved invaluable for assay development in the histocompatibility and immunogenetics field, for generating the human reference genome, and furthered our understanding of MHC diversity. Defined by their HLA-A, -B, -C and -DRB1 alleles, the combined frequency of the haplotypes from these individuals is ~20% in Europe. Thus, a significant proportion of MHC haplotypes, both common and rare throughout the world, and including many associated with disease, are not yet represented. In this workshop component, we are collecting the next generation of MHC-homozygous samples, to expand, diversify and modernize this critical community resource that has been foundational to the field. We asked laboratories worldwide to identify samples homozygous through all HLA class I and/or HLA class II genes, or through whole-genome SNP genotyping or sequencing, to have extensive homozygosity tracts within the MHC region. The focus is non-Europeans or those having HLA haplotypes less common in Europeans. Through this effort, we have obtained samples from 537 individuals representing 294 distinct haplotypes, as determined by their HLA class I and II alleles, and an additional 50 haplotypes distinct in HLA class I or II alleles. Although we have expanded the diversity, many populations remain underrepresented, particularly from Africa, and we encourage further participation. The data will serve as a resource for investigators seeking to characterize variation across the MHC genomic region for disease and population studies.
    Matched MeSH terms: Major Histocompatibility Complex/genetics
  2. Sin YW, Newman C, Dugdale HL, Buesching C, Mannarelli ME, Annavi G, et al.
    PLoS One, 2016;11(10):e0163773.
    PMID: 27695089 DOI: 10.1371/journal.pone.0163773
    The innate immune system provides the primary vertebrate defence system against pathogen invasion, but it is energetically costly and can have immune pathological effects. A previous study in sticklebacks found that intermediate major histocompatibility complex (MHC) diversity correlated with a lower leukocyte coping capacity (LCC), compared to individuals with fewer, or many, MHC alleles. The organization of the MHC genes in mammals, however, differs to the highly duplicated MHC genes in sticklebacks by having far fewer loci. Using European badgers (Meles meles), we therefore investigated whether innate immune activity, estimated functionally as the ability of an individual's leukocytes to produce a respiratory burst, was influenced by MHC diversity. We also investigated whether LCC was influenced by factors such as age-class, sex, body condition, season, year, neutrophil and lymphocyte counts, and intensity of infection with five different pathogens. We found that LCC was not associated with specific MHC haplotypes, MHC alleles, or MHC diversity, indicating that the innate immune system did not compensate for the adaptive immune system even when there were susceptible MHC alleles/haplotypes, or when the MHC diversity was low. We also identified a seasonal and annual variation of LCC. This temporal variation of innate immunity was potentially due to physiological trade-offs or temporal variation in pathogen infections. The innate immunity, estimated as LCC, does not compensate for MHC diversity suggests that the immune system may function differently between vertebrates with different MHC organizations, with implications for the evolution of immune systems in different taxa.
    Matched MeSH terms: Major Histocompatibility Complex/genetics
  3. Chai HC, Phipps ME, Chua KH
    Clin. Dev. Immunol., 2012;2012:963730.
    PMID: 21941582 DOI: 10.1155/2012/963730
    SLE is an autoimmune disease that is not uncommon in Malaysia. In contrast to Malays and Indians, the Chinese seem to be most affected. SLE is characterized by deficiency of body's immune response that leads to production of autoantibodies and failure of immune complex clearance. This minireview attempts to summarize the association of several candidate genes with risk for SLE in the Malaysian population and discuss the genetic heterogeneity that exists locally in Asians and in comparison with SLE in Caucasians. Several groups of researchers have been actively investigating genes that are associated with SLE susceptibility in the Malaysian population by screening possible reported candidate genes across the SLE patients and healthy controls. These candidate genes include MHC genes and genes encoding complement components, TNF, FcγR, T-cell receptors, and interleukins. However, most of the polymorphisms investigated in these genes did not show significant associations with susceptibility to SLE in the Malaysian scenario, except for those occurring in MHC genes and genes coding for TNF-α, IL-1β, IL-1RN, and IL-6.
    Matched MeSH terms: Major Histocompatibility Complex/genetics
  4. Meng W, Zhu Z, Jiang X, Too CL, Uebe S, Jagodic M, et al.
    Arthritis Res Ther, 2017 03 29;19(1):71.
    PMID: 28356135 DOI: 10.1186/s13075-017-1276-2
    BACKGROUND: Multiple factors, including interactions between genetic and environmental risks, are important in susceptibility to rheumatoid arthritis (RA). However, the underlying mechanism is not fully understood. This study was undertaken to evaluate whether DNA methylation can mediate the interaction between genotype and smoking in the development of anti-citrullinated peptide antibody (ACPA)-positive RA.

    METHODS: We investigated the gene-smoking interactions in DNA methylation using 393 individuals from the Epidemiological Investigation of Rheumatoid Arthritis (EIRA). The interaction between rs6933349 and smoking in the risk of developing ACPA-positive RA was further evaluated in a larger portion of the EIRA (1119 controls and 944 ACPA-positive patients with RA), and in the Malaysian Epidemiological Investigation of Rheumatoid Arthritis (MyEIRA) (1556 controls and 792 ACPA-positive patients with RA). Finally, mediation analysis was performed to investigate whether DNA methylation of cg21325723 mediates this gene-environment interaction on the risk of developing of ACPA-positive RA.

    RESULTS: We identified and replicated one significant gene-environment interaction between rs6933349 and smoking in DNA methylation of cg21325723. This gene-smoking interaction is a novel interaction in the risk of developing ACPA-positive in both Caucasian (multiplicative P value = 0.056; additive P value = 0.016) and Asian populations (multiplicative P value = 0.035; additive P value = 0.00027), and it is mediated through DNA methylation of cg21325723.

    CONCLUSIONS: We showed that DNA methylation of cg21325723 can mediate the gene-environment interaction between rs6933349 and smoking, impacting the risk of developing ACPA-positive RA, thus being a potential regulator that integrates both internal genetic and external environmental risk factors.
    Matched MeSH terms: Major Histocompatibility Complex/genetics
  5. Mahzabin T, Pillow JJ, Pinniger GJ, Bakker AJ, Noble PB, White RB, et al.
    Pediatr Res, 2017 Sep;82(3):509-517.
    PMID: 28388600 DOI: 10.1038/pr.2017.99
    BackgroundPregnant women at a high risk of preterm delivery receive glucocorticoids to accelerate fetal lung maturation and surfactant synthesis. However, the effect of antenatal steroids on the developing diaphragm remains unclear. We hypothesized that maternal betamethasone impairs the fetal diaphragm, and the magnitude of the detrimental effect increases with longer duration of exposure. We aimed to determine how different durations of fetal exposure to maternal betamethasone treatment influence the fetal diaphragm at the functional and molecular levels.MethodsDate-mated merino ewes received intramuscular injections of saline (control) or two doses of betamethasone (5.7 mg) at an interval of 24 h commencing either 2 or 14 days before delivery. Preterm lambs were killed after cesarean delivery at 121-day gestational age. In vitro contractile measurements were performed on the right hemidiaphragm, whereas molecular/cellular analyses used the left costal diaphragm.ResultsDifferent durations of fetal exposure to maternal betamethasone had no consistent effect on the protein metabolic pathway, expression of glucocorticoid receptor and its target genes, cellular oxidative status, or contractile properties of the fetal lamb diaphragm.ConclusionThese data suggest that the potential benefits of betamethasone exposure on preterm respiratory function are not compromised by impaired diaphragm function after low-dose maternal intramuscular glucocorticoid exposure.
    Matched MeSH terms: Major Histocompatibility Complex/genetics
  6. Coste C, Gérard N, Dinh CP, Bruguière A, Rouger C, Leong ST, et al.
    Biomolecules, 2020 09 02;10(9).
    PMID: 32887413 DOI: 10.3390/biom10091266
    Modulation of major histocompatibility complex (MHC) expression using drugs has been proposed to control immunity. Phytochemical investigations on Garcinia species have allowed the isolation of bioactive compounds such as polycyclic polyprenylated acylphloroglucinols (PPAPs). PPAPs such as guttiferone J (1), display anti-inflammatory and immunoregulatory activities while garcinol (4) is a histone acetyltransferases (HAT) p300 inhibitor. This study reports on the isolation, identification and biological characterization of two other PPAPs, i.e., xanthochymol (2) and guttiferone F (3) from Garcinia bancana, sharing structural analogy with guttiferone J (1) and garcinol (4). We show that PPAPs 1-4 efficiently downregulated the expression of several MHC molecules (HLA-class I, -class II, MICA/B and HLA-E) at the surface of human primary endothelial cells upon inflammation. Mechanistically, PPAPs 1-4 reduce MHC proteins by decreasing the expression and phosphorylation of the transcription factor STAT1 involved in MHC upregulation mediated by IFN-γ. Loss of STAT1 activity results from inhibition of HAT CBP/p300 activity reflected by a hypoacetylation state. The binding interactions to p300 were confirmed through molecular docking. Loss of STAT1 impairs the expression of CIITA and GATA2 but also TAP1 and Tapasin required for peptide loading and transport of MHC. Overall, we identified new PPAPs issued from Garcinia bancana with potential immunoregulatory properties.
    Matched MeSH terms: Major Histocompatibility Complex/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links