Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Ogoh K, Akiyoshi R, Suzuki H
    Biochem Biophys Rep, 2020 Sep;23:100771.
    PMID: 32490216 DOI: 10.1016/j.bbrep.2020.100771
    Bioluminescence microscopy is an area attracting considerable interest in the field of cell biology because it offers several advantages over fluorescence microscopy, including no requirement for excitation light and being phototoxicity free. This method requires brighter luciferase for imaging; however, suitable genetic resource material for this purpose is not available at present. To achieve brighter bioluminescence microscopy, we developed a new firefly luciferase. Using the brighter luciferase, a reporter strain of Drosophila Gal4-UAS (Upstream Activating Sequence) system was constructed. This system demonstrated the expression pattern of engrailed, which is a segment polarity gene, during Drosophila metamorphosis by bioluminescence microscopy, and revealed drastic spatiotemporal change in the engrailed expression pattern during head eversion in the early stage of pupation.
    Matched MeSH terms: Luciferases; Luciferases, Firefly
  2. Escaffre O, Hill T, Ikegami T, Juelich TL, Smith JK, Zhang L, et al.
    J Infect Dis, 2018 10 05;218(10):1602-1610.
    PMID: 29912426 DOI: 10.1093/infdis/jiy357
    Background: Nipah virus (NiV) is a paramyxovirus (genus Henipavirus) that can cause severe respiratory illness and encephalitis in humans. Transmission occurs through consumption of NiV-contaminated foods, and contact with NiV-infected animals or human body fluids. However, it is unclear whether aerosols derived from aforesaid sources or others also contribute to transmission, and current knowledge on NiV-induced pathogenicity after small-particle aerosol exposure is still limited.

    Methods: Infectivity, pathogenicity, and real-time dissemination of aerosolized NiV in Syrian hamsters was evaluated using NiV-Malaysia (NiV-M) and/or its recombinant expressing firefly luciferase (rNiV-FlucNP).

    Results: Both viruses had an equivalent pathogenicity in hamsters, which developed respiratory and neurological symptoms of disease, similar to using intranasal route, with no direct correlations to the dose. We showed that virus replication was predominantly initiated in the lower respiratory tract and, although delayed, also intensely in the oronasal cavity and possibly the brain, with gradual increase of signal in these regions until at least day 5-6 postinfection.

    Conclusion: Hamsters infected with small-particle aerosolized NiV undergo similar clinical manifestations of the disease as previously described using liquid inoculum, and exhibit histopathological lesions consistent with NiV patient reports. NiV droplets could therefore play a role in transmission by close contact.

    Matched MeSH terms: Luciferases, Firefly/genetics; Luciferases, Firefly/metabolism
  3. Lo MK, Nichol ST, Spiropoulou CF
    Antiviral Res, 2014 Jun;106:53-60.
    PMID: 24680955 DOI: 10.1016/j.antiviral.2014.03.011
    Nipah virus (NiV) outbreaks have occurred in Malaysia, India, and Bangladesh, and the virus continues to cause annual outbreaks of fatal human encephalitis in Bangladesh due to spillover from its bat host reservoir. Due to its high pathogenicity, its potential use for bio/agro-terrorism, and to the current lack of approved therapeutics, NiV is designated as an overlap select agent requiring biosafety level-4 containment. Although the development of therapeutic monoclonal antibodies and soluble protein subunit vaccines have shown great promise, the paucity of effective antiviral drugs against NiV merits further exploration of compound libraries using rapid quantitative antiviral assays. As a proof-of-concept study, we evaluated the use of fluorescent and luminescent reporter NiVs for antiviral screening. We constructed and rescued NiVs expressing either Renilla luciferase or green fluorescent protein, and characterized their reporter signal kinetics in different cell types as well as in the presence of several inhibitors. The 50% effective concentrations (EC50s) derived for inhibitors against both reporter viruses are within range of EC50s derived from virus yield-based dose-response assays against wild-type NiV (within 1Log10), thus demonstrating that both reporter NiVs can serve as robust antiviral screening tools. Utilizing these live NiV-based reporter assays requires modest instrumentation, and circumvents the time and labor-intensive steps associated with cytopathic effect or viral antigen-based assays. These reporter NiVs will not only facilitate antiviral screening, but also the study of host cell components that influence the virus life cycle.
    Matched MeSH terms: Luciferases, Renilla/analysis*; Luciferases, Renilla/genetics
  4. Ishikawa T, Abe M, Masuda M
    Virus Res, 2015 Jan 2;195:153-61.
    PMID: 25451067 DOI: 10.1016/j.virusres.2014.10.010
    Japanese encephalitis virus (JEV) genotype V was originally isolated in Malaysia in 1952 and has long been restricted to the area. In 2009, sudden emergence of the genotype V in China and Korea was reported, suggesting expansion of its geographical distribution. Although studies on the genotype V are becoming more important, they have been limited partly due to lack of its infectious molecular clone. In this study, a plasmid carrying cDNA corresponding to the entire genome of JEV Muar strain, which belongs to genotype V, in the downstream of T7 promoter was constructed. Electroporation of viral RNA transcribed by T7 RNA polymerase (T7RNAP) in vitro from the plasmid led to production of progeny viruses both in mammalian and mosquito cells. Also, transfection of the infectious clone plasmid into mammalian cells expressing T7RNAP transiently or stably was demonstrated to generate infectious progenies. When the viral structural protein genes were partially deleted from the full-length cDNA, the subgenomic RNA transcribed in vitro from the modified plasmid was shown to replicate itself in mammalian cells as a replicon. The replicon carrying the firefly luciferase gene in place of the deleted structural protein genes was also shown to efficiently replicate itself and express luciferase in mammalian cells. Compared with the replicon derived from JEV genotype III (Nakayama strain), the genotype V-derived replicon appeared to be more tolerant to introduction of a foreign gene. The infectious clone and the replicons constructed in this study may serve as useful tools for characterizing JEV genotype V.
    Matched MeSH terms: Luciferases, Firefly/biosynthesis; Luciferases, Firefly/genetics
  5. Teow SY, Liew K, Che Mat MF, Marzuki M, Abdul Aziz N, Chu TL, et al.
    BMC Biotechnol, 2019 06 14;19(1):34.
    PMID: 31200673 DOI: 10.1186/s12896-019-0528-4
    BACKGROUND: In vitro modelling of cancer cells is becoming more complex due to prevailing evidence of intimate interactions between cancer cells and their surrounding stroma. A co-culture system which consists of more than one cell type is physiologically more relevant and thus, could serve as a useful model for various biological studies. An assay that specifically detects the phenotypic changes of cancer cells in a multi-cellular system is lacking for nasopharyngeal carcinoma (NPC).

    RESULTS: Here, we describe a luciferase/luciferin (XenoLuc) assay that could specifically measure changes in the proliferation of cancer cells in the co-culture system using two modified NPC patient-derived tumour xenograft (PDTXs) cells: Xeno284-gfp-luc2 and XenoB110-gfp-luc2. Through this assay, we are able to show that the growth of NPC xenograft cells in both two-dimensional (2D) and three-dimensional (3D) models was enhanced when co-cultured with normal human dermal fibroblasts (NHDFs). In addition, potential applications of this assay in in vitro drug or inhibitor screening experiments are also illustrated.

    CONCLUSIONS: XenoLuc assay is specific, sensitive, rapid and cost-effective for measuring the growth of luciferase-expressing cells in a co- or multiple-culture system. This assay may also be adapted for tumour microenvironment studies as well as drug screening experiments in more complex 3D co-culture systems.

    Matched MeSH terms: Luciferases/genetics; Luciferases/metabolism*
  6. Khetawat D, Broder CC
    Virol J, 2010 Nov 12;7:312.
    PMID: 21073718 DOI: 10.1186/1743-422X-7-312
    BACKGROUND: Hendra virus (HeV) and Nipah virus (NiV) are newly emerged zoonotic paramyxoviruses discovered during outbreaks in Queensland, Australia in 1994 and peninsular Malaysia in 1998/9 respectively and classified within the new Henipavirus genus. Both viruses can infect a broad range of mammalian species causing severe and often-lethal disease in humans and animals, and repeated outbreaks continue to occur. Extensive laboratory studies on the host cell infection stage of HeV and NiV and the roles of their envelope glycoproteins have been hampered by their highly pathogenic nature and restriction to biosafety level-4 (BSL-4) containment. To circumvent this problem, we have developed a henipavirus envelope glycoprotein pseudotyped lentivirus assay system using either a luciferase gene or green fluorescent protein (GFP) gene encoding human immunodeficiency virus type-1 (HIV-1) genome in conjunction with the HeV and NiV fusion (F) and attachment (G) glycoproteins.

    RESULTS: Functional retrovirus particles pseudotyped with henipavirus F and G glycoproteins displayed proper target cell tropism and entry and infection was dependent on the presence of the HeV and NiV receptors ephrinB2 or B3 on target cells. The functional specificity of the assay was confirmed by the lack of reporter-gene signals when particles bearing either only the F or only G glycoprotein were prepared and assayed. Virus entry could be specifically blocked when infection was carried out in the presence of a fusion inhibiting C-terminal heptad (HR-2) peptide, a well-characterized, cross-reactive, neutralizing human mAb specific for the henipavirus G glycoprotein, and soluble ephrinB2 and B3 receptors. In addition, the utility of the assay was also demonstrated by an examination of the influence of the cytoplasmic tail of F in its fusion activity and incorporation into pseudotyped virus particles by generating and testing a panel of truncation mutants of NiV and HeV F.

    CONCLUSIONS: Together, these results demonstrate that a specific henipavirus entry assay has been developed using NiV or HeV F and G glycoprotein pseudotyped reporter-gene encoding retrovirus particles. This assay can be conducted safely under BSL-2 conditions and will be a useful tool for measuring henipavirus entry and studying F and G glycoprotein function in the context of virus entry, as well as in assaying and characterizing neutralizing antibodies and virus entry inhibitors.

    Matched MeSH terms: Luciferases/genetics; Luciferases/metabolism
  7. Zaborowski MP, Cheah PS, Zhang X, Bushko I, Lee K, Sammarco A, et al.
    Sci Rep, 2019 Nov 22;9(1):17387.
    PMID: 31758005 DOI: 10.1038/s41598-019-53554-y
    Extracellular vesicles (EVs) released by cells play a role in intercellular communication. Reporter and targeting proteins can be modified and exposed on the surface of EVs to investigate their half-life and biodistribution. A characterization of membrane-bound Gaussia luciferase (mbGluc) revealed that its signal was detected also in a form smaller than common EVs (<70 nm). We demonstrated that mbGluc initially exposed on the surface of EVs, likely undergoes proteolytic cleavage and processed fragments of the protein are released into the extracellular space in active form. Based on this observation, we developed a new assay to quantitatively track shedding of membrane proteins from the surface of EVs. We used this assay to show that ectodomain shedding in EVs is continuous and is mediated by specific proteases, e.g. metalloproteinases. Here, we present a novel tool to study membrane protein cleavage and release using both in vitro and in vivo models.
    Matched MeSH terms: Luciferases/genetics; Luciferases/metabolism*
  8. Habib O, Mohd Sakri R, Ghazalli N, Chau DM, Ling KH, Abdullah S
    PLoS One, 2020;15(12):e0244386.
    PMID: 33347482 DOI: 10.1371/journal.pone.0244386
    CpG-free pDNA was reported to facilitate sustained transgene expression with minimal inflammation in vivo as compared to CpG-containing pDNA. However, the expression potential and impact of CpG-free pDNA in in vitro model have never been described. Hence, in this study, we analyzed the transgene expression profiles of CpG-free pDNA in vitro to determine the influence of CpG depletion from the transgene. We found that in contrast to the published in vivo studies, CpG-free pDNA expressed a significantly lower level of luciferase than CpG-rich pDNA in several human cell lines. By comparing novel CpG-free pDNA carrying CpG-free GFP (pZGFP: 0 CpG) to CpG-rich GFP (pRGFP: 60 CpGs), we further showed that the discrepancy was not influenced by external factors such as gene transfer agent, cell species, cell type, and cytotoxicity. Moreover, pZGFP exhibited reduced expression despite having equal gene dosage as pRGFP. Analysis of mRNA distribution revealed that the mRNA export of pZGFP and pRGFP was similar; however, the steady state mRNA level of pZGFP was significantly lower. Upon further investigation, we found that the CpG-free transgene in non-integrating CpG-free pDNA backbone acquired increased nucleosome enrichment as compared with CpG-rich transgene, which may explain the observed reduced level of steady state mRNA. Our findings suggest that nucleosome enrichment could regulate non-integrating CpG-free pDNA expression and has implications on pDNA design.
    Matched MeSH terms: Luciferases/genetics
  9. Moraes Barros RR, Thawnashom K, Gibson TJ, Armistead JS, Caleon RL, Kaneko M, et al.
    Malar J, 2021 Jun 05;20(1):247.
    PMID: 34090438 DOI: 10.1186/s12936-021-03773-4
    BACKGROUND: Plasmodium knowlesi is now the major cause of human malaria in Malaysia, complicating malaria control efforts that must attend to the elimination of multiple Plasmodium species. Recent advances in the cultivation of P. knowlesi erythrocytic-stage parasites in vitro, transformation with exogenous DNA, and infection of mosquitoes with gametocytes from culture have opened up studies of this pathogen without the need for resource-intensive and costly non-human primate (NHP) models. For further understanding and development of methods for parasite transformation in malaria research, this study examined the activity of various trans-species transcriptional control sequences and the influence of Plasmodium vivax centromeric (pvcen) repeats in plasmid-transfected P. knowlesi parasites.

    METHODS: In vitro cultivated P. knowlesi parasites were transfected with plasmid constructs that incorporated Plasmodium vivax or Plasmodium falciparum 5' UTRs driving the expression of bioluminescence markers (firefly luciferase or Nanoluc). Promoter activities were assessed by bioluminescence, and parasites transformed with human resistant allele dihydrofolate reductase-expressing plasmids were selected using antifolates. The stability of transformants carrying pvcen-stabilized episomes was assessed by bioluminescence over a complete parasite life cycle through a rhesus macaque monkey, mosquitoes, and a second rhesus monkey.

    RESULTS: Luciferase expression assessments show that certain P. vivax promoter regions, not functional in the more evolutionarily-distant P. falciparum, can drive transgene expression in P. knowlesi. Further, pvcen repeats may improve the stability of episomal plasmids in P. knowlesi and support detection of NanoLuc-expressing elements over the full parasite life cycle from rhesus macaque monkeys to Anopheles dirus mosquitoes and back again to monkeys. In assays of drug responses to chloroquine, G418 and WR9910, anti-malarial half-inhibitory concentration (IC50) values of blood stages measured by NanoLuc activity proved comparable to IC50 values measured by the standard SYBR Green method.

    CONCLUSION: All three P. vivax promoters tested in this study functioned in P. knowlesi, whereas two of the three were inactive in P. falciparum. NanoLuc-expressing, centromere-stabilized plasmids may support high-throughput screenings of P. knowlesi for new anti-malarial agents, including compounds that can block the development of mosquito- and/or liver-stage parasites.

    Matched MeSH terms: Luciferases/analysis
  10. Weihs F, Peh A, Dacres H
    Anal Chim Acta, 2020 Mar 15;1102:99-108.
    PMID: 32044001 DOI: 10.1016/j.aca.2019.12.044
    Proteases are key signalling molecules for many physiological processes and their dysregulation is implicated in the progression of a range of diseases. Sensitive methods to measure protease activities in complex biological samples are critical for rapid disease diagnoses. The proteolytic activity of plasmin reflects the fibrinolysis state of blood and its deregulation can indicate pathologies such as bleeding events. While Bioluminescence Resonance Energy Transfer (BRET) is a powerful and sensitive method for the detection of protease activity, the commonly applied blue-shifted BRET2 system, consisting of the Renilla luciferase Rluc2 and the large-stokes shift fluorescent protein GFP2, suffers from light absorption and light scattering in human plasma samples. To address this challenge, we developed a red-shifted BRET-based plasmin sensor by substituting BRET2 with the BRET6 system. BRET6 is composed of the red-shifted RLuc8.6 luciferase linked to the red light emitting fluorescent protein TurboFP635. The BRET6 biosensor exhibited 3-fold less light absorption in plasma samples compared to the BRET2 sensor leading to an up to a 5-fold increase in sensitivity for plasmin detection in plasma. The limits of detection for plasmin were determined to be 11.90 nM in 7.5% (v/v) plasma with a 10 min assay which enables biologically relevant plasmin activities of thrombolytic therapies to be detected. While a colorigenic plasmin activity assay achieved a similar detection limit of 10.91 nM in 7.5% (v/v) human plasma, it required a 2 h incubation period. The BRET6 sensor described here is faster and more specific than the colorigenic assay as it did not respond to unspiked human plasma samples.
    Matched MeSH terms: Luciferases, Renilla/chemistry
  11. Marin-Mogollon C, Salman AM, Koolen KMJ, Bolscher JM, van Pul FJA, Miyazaki S, et al.
    PMID: 31058097 DOI: 10.3389/fcimb.2019.00096
    Transgenic malaria parasites expressing fluorescent and bioluminescent proteins are valuable tools to interrogate malaria-parasite biology and to evaluate drugs and vaccines. Using CRISPR/Cas9 methodology a transgenic Plasmodium falciparum (Pf) NF54 line was generated that expresses a fusion of mCherry and luciferase genes under the control of the Pf etramp10.3 gene promoter (line [email protected]). Pf etramp10.3 is related to rodent Plasmodium uis4 and the uis4 promoter has been used to drive high transgene expression in rodent parasite sporozoites and liver-stages. We examined transgene expression throughout the complete life cycle and compared this expression to transgenic lines expressing mCherry-luciferase and GFP-luciferase under control of the constitutive gapdh and eef1a promoters. The [email protected] parasites express mCherry in gametocytes, sporozoites, and liver-stages. While no mCherry signal was detected in asexual blood-stage parasites above background levels, luciferase expression was detected in asexual blood-stages, as well as in gametocytes, sporozoites and liver-stages, with the highest levels of reporter expression detected in stage III-V gametocytes and in sporozoites. The expression of mCherry and luciferase in gametocytes and sporozoites makes this transgenic parasite line suitable to use in in vitro assays that examine the effect of transmission blocking inhibitors and to analyse gametocyte and sporozoite biology.
    Matched MeSH terms: Luciferases/analysis*; Luciferases/genetics
  12. Alhaji SY, Chowdhury EH, Rosli R, Hassan F, Abdullah S
    Biomed Res Int, 2014;2014:646787.
    PMID: 25143941 DOI: 10.1155/2014/646787
    Existing nonviral gene delivery systems to lungs are inefficient and associated with dose limiting toxicity in mammalian cells. Therefore, carbonate apatite (CO3Ap) nanoparticles were examined as an alternative strategy for effective gene delivery to the lungs. This study aimed to (1) assess the gene delivery efficiency of CO3Ap in vitro and in mouse lungs, (2) evaluate the cytotoxicity effect of CO3Ap/pDNA in vitro, and (3) characterize the CO3Ap/pDNA complex formulations. A significantly high level of reporter gene expression was detected from the lung cell line transfected with CO3Ap/pDNA complex prepared in both serum and serum-free medium. Cytotoxicity analysis revealed that the percentage of the viable cells treated with CO3Ap to be almost similar to the untreated cells. Characterization analyses showed that the CO3Ap/pDNA complexes are in a nanometer range with aggregated spherical structures and tended to be more negatively charged. In the lung of mice, highest level of transgene expression was observed when CO3Ap (8 μL) was complexed with 40 μg of pDNA at day 1 after administration. Although massive reduction of gene expression was seen beyond day 1 post administration, the level of expression remained significant throughout the study period.
    Matched MeSH terms: Luciferases/metabolism
  13. Goh PT, Kuah MK, Chew YS, Teh HY, Shu-Chien AC
    Fish Physiol Biochem, 2020 Aug;46(4):1349-1359.
    PMID: 32239337 DOI: 10.1007/s10695-020-00793-w
    Fish are a major source of beneficial n-3 LC-PUFA in human diet, and there is considerable interest to elucidate the mechanism and regulatory aspects of LC-PUFA biosynthesis in farmed species. Long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis involves the activities of two groups of enzymes, the fatty acyl desaturase (Fads) and elongase of very long-chain fatty acid (Elovl). The promoters of elovl5 elongase, which catalyses the rate-limiting reaction of elongating polyunsaturated fatty acid (PUFA), have been previously described and characterized from several marine and diadromous teleost species. We report here the cloning and characterization of elovl5 promoter from two freshwater fish species, the carnivorous snakehead fish (Channa striata) and zebrafish. Results show the presence of sterol-responsive elements (SRE) in the core regulatory region of both promoters, suggesting the importance of sterol regulatory element-binding protein (Srebp) in the regulation of elovl5 for both species. Mutagenesis luciferase and electrophoretic mobility shift assays further validate the role of SRE for basal transcriptional activation. In addition, several Sp1-binding sites located in close proximity with SRE were present in the snakehead promoter, with one having a potential synergy with SRE in the regulation of elovl5 expression. The core zebrafish elovl5 promoter fragment also directed in vivo expression in the yolk syncytial layer of developing zebrafish embryos.
    Matched MeSH terms: Luciferases/genetics
  14. Zaborowski MP, Lee K, Na YJ, Sammarco A, Zhang X, Iwanicki M, et al.
    Cell Rep, 2019 Apr 02;27(1):255-268.e6.
    PMID: 30943406 DOI: 10.1016/j.celrep.2019.03.003
    Analysis of cancer-derived extracellular vesicles (EVs) in biofluids potentially provides a source of disease biomarkers. At present there is no procedure to systematically identify which antigens should be targeted to differentiate cancer-derived from normal host cell-derived EVs. Here, we propose a computational framework that integrates information about membrane proteins in tumors and normal tissues from databases: UniProt, The Cancer Genome Atlas, the Genotype-Tissue Expression Project, and the Human Protein Atlas. We developed two methods to assess capture of EVs from specific cell types. (1) We used palmitoylated fluorescent protein (palmtdTomato) to label tumor-derived EVs. Beads displaying antibodies of interest were incubated with conditioned medium from palmtdTomato-expressing cells. Bound EVs were quantified using flow cytometry. (2) We also showed that membrane-bound Gaussia luciferase allows the detection of cancer-derived EVs in blood of tumor-bearing animals. Our analytical and validation platform should be applicable to identify antigens on EVs from any tumor type.
    Matched MeSH terms: Luciferases/metabolism
  15. Yusof NA, Hashim NH, Beddoe T, Mahadi NM, Illias RM, Bakar FD, et al.
    Cell Stress Chaperones, 2016 Jul;21(4):707-15.
    PMID: 27154490 DOI: 10.1007/s12192-016-0696-2
    The ability of eukaryotes to adapt to an extreme range of temperatures is critically important for survival. Although adaptation to extreme high temperatures is well understood, reflecting the action of molecular chaperones, it is unclear whether these molecules play a role in survival at extremely low temperatures. The recent genome sequencing of the yeast Glaciozyma antarctica, isolated from Antarctic sea ice near Casey Station, provides an opportunity to investigate the role of molecular chaperones in adaptation to cold temperatures. We isolated a G. antarctica homologue of small heat shock protein 20 (HSP20), GaSGT1, and observed that the GaSGT1 mRNA expression in G. antarctica was markedly increased following culture exposure at low temperatures. Additionally, we demonstrated that GaSGT1 overexpression in Escherichia coli protected these bacteria from exposure to both high and low temperatures, which are lethal for growth. The recombinant GaSGT1 retained up to 60 % of its native luciferase activity after exposure to luciferase-denaturing temperatures. These results suggest that GaSGT1 promotes cell thermotolerance and employs molecular chaperone-like activity toward temperature assaults.
    Matched MeSH terms: Luciferases/metabolism
  16. Chung, Hung Hui, Azham Zulkharnain
    MyJurnal
    The FADS2 catalyzes the first rate-limiting step in the long chain-polyunsaturated fatty acids
    (LC-PUFAs) biosynthesis pathway by converting -linolenic acid and linoleic acid into
    stearidonic acid and -linolenic acid via the -3 and -6 pathways respectively. In mammals,
    PPAR and SREBP-1c have been implicated in the polyunsaturated fatty acids (PUFAs)
    mediated transcriptional activation of FADS2 promoter. However, in zebrafish, not much is
    known regarding the regulation of fads2 transcriptional regulation. Here, in this study, five
    vectors containing different promoter regions were constructed in order to analyse putative
    promoter activities. Through truncation analysis, it was found that the 1.2 kb promoter was able
    to drive luciferase activity to an approximate 40-fold in HepG2 cells. Upon mutagenesis
    analysis, three sites which are the putative NF-Y, SREBP and PPAR binding sites were found
    to be essential in driving the promoter activity. Lastly, the 1.2 kb fads2 promoter was able to
    direct EGFP expression specifically to the yolk syncytial layer (YSL) when transiently
    expressed in microinjected zebrafish embryos.
    Matched MeSH terms: Luciferases
  17. Manvati S, Mangalhara KC, Kalaiarasan P, Chopra R, Agarwal G, Kumar R, et al.
    Cancer Cell Int, 2019;19:230.
    PMID: 31516387 DOI: 10.1186/s12935-019-0933-8
    Background: Despite several reports describing the dual role of miR-145 as an oncogene and a tumor suppressor in cancer, not much has been resolved and understood.

    Method: In this study, the potential targets of miR-145 were identified bio-informatically using different target prediction tools. The identified target genes were validated in vitro by dual luciferase assay. Wound healing and soft agar colony assay assessed cell proliferation and migration. miR-145 expression level was measured quantitatively by RT-PCR at different stages of breast tumor. Western blot was used to verify the role of miR-145 in EMT transition using key marker proteins.

    Result: Wound healing and soft agar colony assays, using miR-145 over-expressing stably transfected MCF7 cells, unraveled its role as a pro-proliferation candidate in cancerous cells. The association between miR-145 over-expression and differential methylation patterns in representative target genes (DR5, BCL2, TP53, RNF8, TIP60, CHK2, and DCR2) supported the inference drawn. These in vitro observations were validated in a representative set of nodal positive tumors of stage 3 and 4 depicting higher miR-145 expression as compared to early stages. Further, the role of miR-145 in epithelial-mesenchymal (EMT) transition found support through the observation of two key markers, Vimentin and ALDL, where a positive correlation with Vimentin protein and a negative correlation with ALDL mRNA expression were observed.

    Conclusion: Our results demonstrate miR-145 as a pro-cancerous candidate, evident from the phenotypes of aggressive cellular proliferation, epithelial to mesenchymal transition, hypermethylation of CpG sites in DDR and apoptotic genes and upregulation of miR-145 in later stages of tumor tissues.

    Matched MeSH terms: Luciferases
  18. Raikundalia S, Sa'Dom SAFM, Few LL, Too WCS
    Oncol Lett, 2021 Mar;21(3):183.
    PMID: 33574922 DOI: 10.3892/ol.2021.12444
    Choline kinase (ChK) catalyzes the first step in the CDP-choline pathway for the synthesis of phosphatidylcholine. The α isoform of this enzyme is overexpressed in various types of cancer and its inhibition or downregulation has been applied as an anticancer strategy. In spite of increasing attention being paid to ChK expression, as well as its activity and inhibition in cancer, there are only limited studies available on the regulation of ChK, including its regulation by microRNAs (miRNAs/miRs). The dysregulation of gene expression by miRNAs is a common cause for carcinogenesis. In the present study, miR-367-3p was predicted to target the 3'-untranslated region (UTR) of the ChK α (chka) mRNA transcript. The binding of miR-367-3p to the 3'-UTR of chka was validated by a luciferase assay. The effects of the miR-367-3p mimic on chka gene and protein expression levels were determined by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. miR-367-3p significantly downregulated the expression of chka to ~60% of the negative control. Cells transfected with miR-367-3p exhibited higher levels of apoptosis and a lower cell migration compared with the control. To the best of our knowledge, the present study provided the first experimental evidence of the regulation of chka expression by miR-367-3p. The pro-apoptotic and suppressive effects of miR-367-3p on cell migration were similar to the anticancer effects resulting from the inhibition of ChK enzyme activity or the knockdown of chka gene expression by small interfering RNA. Therefore, these findings may potentially lead to the use of miR-367-3p in anticancer strategies that target ChK.
    Matched MeSH terms: Luciferases
  19. Abd-Aziz N, Stanbridge EJ, Shafee N
    Oncol Lett, 2015 Oct;10(4):2192-2196.
    PMID: 26622817
    Bortezomib is the first proteasomal inhibitor (PI) to be used therapeutically for treating relapse cases of multiple myeloma and mantle cell lymphoma. A proposed mechanism for its action is that it prevents the proteasomal degradation of proapoptotic proteins, leading to enhanced apoptosis. Although the α subunit of hypoxia-inducible factor (HIF)-1 is not degraded with bortezomib treatment, the heterodimeric HIF-1 fails to transactivate target genes. HIF-1 and HIF-2 are related hypoxia-inducible transcription factors that are important for the survival of hypoxic tumor cells. The majority of reports have focused on the effects of bortezomib on the transcriptional activities of HIF-1, but not HIF-2. The present study investigated the effects of bortezomib on HIF-2 activity in cancer cells with different levels of HIF-1α and HIF-2α subunits. HIF-α subunit levels were detected using specific antibodies, while HIF transcriptional activities were evaluated using immunodetection, reverse transcription-polymerase chain reaction and luciferase reporter assay. Bortezomib treatment was found to suppress the transcription and expression of CA9, a HIF-1-specific target gene; however, it had minimal effects on EPO and GLUT-1, which are target genes of both HIF-1 and HIF-2. These data suggest that bortezomib attenuates the transcriptional activity only of HIF-1, and not HIF-2. This novel finding on the lack of an inhibitory effect of bortezomib on HIF-2 transcriptional activity has implications for the improvement of design and treatment modalities of bortezomib and other PI drugs.
    Matched MeSH terms: Luciferases
  20. Ahmad MK, Tabana YM, Ahmed MA, Sandai DA, Mohamed R, Ismail IS, et al.
    Malays J Med Sci, 2017 Dec;24(6):29-38.
    PMID: 29379384 DOI: 10.21315/mjms2017.24.6.4
    Background: A norovirus maintains its viability, infectivity and virulence by its ability to replicate. However, the biological mechanisms of the process remain to be explored. In this work, the NanoLuc™ Luciferase gene was used to develop a reporter-tagged replicon system to study norovirus replication.

    Methods: The NanoLuc™ Luciferase reporter protein was engineered to be expressed as a fusion protein for MNV-1 minor capsid protein, VP2. The foot-and-mouth disease virus 2A (FMDV2A) sequence was inserted between the 3'end of the reporter gene and the VP2 start sequence to allow co-translational 'cleavage' of fusion proteins during intracellular transcript expression. Amplification of the fusion gene was performed using a series of standard and overlapping polymerase chain reactions. The resulting amplicon was then cloned into three readily available backbones of MNV-1 cDNA clones.

    Results: Restriction enzyme analysis indicated that the NanoLucTM Luciferase gene was successfully inserted into the parental MNV-1 cDNA clone. The insertion was further confirmed by using DNA sequencing.

    Conclusion: NanoLuc™ Luciferase-tagged MNV-1 cDNA clones were successfully engineered. Such clones can be exploited to develop robust experimental assays for in vitro assessments of viral RNA replication.

    Matched MeSH terms: Luciferases
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links