Displaying all 2 publications

Abstract:
Sort:
  1. Mat MC, Mohamed AS, Hamid SS
    Lipids Health Dis, 2011;10:216.
    PMID: 22104447 DOI: 10.1186/1476-511X-10-216
    Oxidized low density lipoprotein plays an important role in development of foam cells in atherosclerosis. The study was focused on regulation of primary human monocyte growth and CD11b expression in presence of Nigella sativa oil.
    Matched MeSH terms: Lipoproteins, LDL/pharmacology
  2. Katouah H, Chen A, Othman I, Gieseg SP
    Int J Biochem Cell Biol, 2015 Oct;67:34-42.
    PMID: 26255116 DOI: 10.1016/j.biocel.2015.08.001
    Oxidised low density lipoprotein (oxLDL) is thought to be a significant contributor to the death of macrophage cells observed in advanced atherosclerotic plaques. Using human-derived U937 cells we have examined the effect of cytotoxic oxLDL on oxidative stress and cellular catabolism. Within 3h of the addition of oxLDL, there was a rapid, concentration dependent rise in cellular reactive oxygen species followed by the loss of cellular GSH, and the enzyme activity of both glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and aconitase. The loss of these catabolic enzymes was accompanied by the loss of cellular ATP and lower lactate generation. Addition of the macrophage antioxidant 7,8-dihydroneopterin inhibited the ROS generation, glutathione loss and catabolic inactivation. NOX was shown to be activated by oxLDL addition while apocynin inhibited the loss of GSH and cell viability. The data suggests that oxLDL triggers an excess of ROS production through NOX activation, and catabolic failure through thiol oxidation resulting in cell death.
    Matched MeSH terms: Lipoproteins, LDL/pharmacology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links