A gel-based proteomics approach was used to screen for proteins of differential abundance between the saliva of smokers and those who had never smoked. Subjecting precipitated proteins from whole human saliva of healthy non-smokers to two-dimensional electrophoresis (2-DE) generated typical profiles comprising more than 50 proteins. While 35 of the proteins were previously established by other researchers, an additional 22 proteins were detected in the 2-DE saliva protein profiles generated in the present study. When the 2-DE profiles were compared to those obtained from subjects considered to be heavy cigarette smokers, three saliva proteins, including interleukin-1 receptor antagonist, thioredoxin and lipocalin-1, showed significant enhanced expression. The distribution patterns of lipocalin-1 isoforms were also different between cigarette smokers and non-smokers. The three saliva proteins have good potential to be used as biomarkers for the adverse effects of smoking and the risk for inflammatory and chronic diseases that are associated with it.
We investigated the role of lipocalin-2 (LCN-2) and its receptor (SLC22A17) in mediating clonal dominance in a patient with both BCR-ABL and JAK2-V617F mutations. LCN-2 mRNA showed a near 50-fold increase in expression, accompanied by down-regulation of SLC22A17, coinciding with increase in BCR-ABL transcripts, loss of JAK2-V617F and change of clinical phenotype from polycythaemia vera to chronic myeloid leukaemia. These changes were reversed after commencing imatinib mesylate. Consistent with experimental studies, BCR-ABL+ cells express LCN-2 leading to suppression of BCR-ABL- cells and explain their eventual dominance when occurring together with JAK2-V617F.