Visual stress (VS) affects reading in 5-12% of the general population and 31-36% of children with reading disorders. Symptoms include print distortions and visual discomfort when reading, and are exacerbated by fluorescent lighting. Prior research has indicated that VS can also affect proficient readers. We therefore examined levels of visual discomfort in a group of expert readers (n = 24) under both standard and spectrally-filtered fluorescent lighting. Participants rated their awareness of six symptoms of VS under each lighting condition. Under the standard condition, 4(16.7%) of the group recorded moderate to high levels of VS. Differences in symptom levels and reading speed between conditions were analysed using the Wilcoxon Signed Rank Test. Under the filter condition, the group reported less discomfort regarding all six symptoms of VS surveyed. The differences were significant with respect to three of the symptoms (p = .029 - p < .001), with a medium effect size in all of them (r = .31 - r = .46) and total score (p = .007; r = .39). Variations in reading proficiency included significantly fewer self-corrections (p = .019) and total errors (p = .004). Here we present evidence that VS-type symptoms of reading discomfort are not confined to populations with reading difficulties and may also occur in proficient readers, and that simple adaptations to fluorescent lighting may alleviate such symptoms.
Although many factors have been suggested as causes for breast cancer, the increased incidence of the disease seen in women working in night shifts led to the hypothesis that the suppression of melatonin by light or melatonin deficiency plays a major role in cancer development. Studies on the 7,12-dimethylbenz[a]anthracene and N-methyl-N-nitrosourea experimental models of human breast cancer indicate that melatonin is effective in reducing cancer development. In vitro studies in MCF-7 human breast cancer cell line have shown that melatonin exerts its anticarcinogenic actions through a variety of mechanisms, and that it is most effective in estrogen receptor (ER) alpha-positive breast cancer cells. Melatonin suppresses ER gene, modulates several estrogen dependent regulatory proteins and pro-oncogenes, inhibits cell proliferation, and impairs the metastatic capacity of MCF-7 human breast cancer cells. The anticarcinogenic action on MCF-7 cells has been demonstrated at the physiological concentrations of melatonin attained at night, suggesting thereby that melatonin acts like an endogenous antiestrogen. Melatonin also decreases the formation of estrogens from androgens via aromatase inhibition. Circulating melatonin levels are abnormally low in ER-positive breast cancer patients thereby supporting the melatonin hypothesis for breast cancer in shift working women. It has been postulated that enhanced endogenous melatonin secretion is responsible for the beneficial effects of meditation as a form of psychosocial intervention that helps breast cancer patients.