Displaying all 4 publications

Abstract:
Sort:
  1. Singh VA, Ramalingam S, Haseeb A, Yasin NFB
    J Orthop Surg (Hong Kong), 2020 7 23;28(2):2309499020941659.
    PMID: 32696708 DOI: 10.1177/2309499020941659
    INTRODUCTION: Limb length discrepancy (LLD) of lower extremities is underdiagnosed due to compensatory mechanisms during locomotion. The natural course of compensation leads to biomechanical alteration in human musculoskeletal system leading to adverse effects. General consensus accepts LLD more than 2 cm as significant to cause biomechanical alteration. No studies were conducted correlating height and lower extremities true length (TL) to signify LLD. Examining significant LLD in relation to height and TL using dynamic gait analysis with primary focus on kinematics and secondary focus on kinetics would provide an objective evaluation method.

    METHODOLOGY: Forty participants with no evidence of LLD were recruited. Height and TL were measured. Reflective markers were attached at specific points in lower extremity and subjects walked in gait lab at a self-selected normal walking pace with artificial LLDs of 0, 1, 2, 3, and 4 cm simulated using shoe raise. Accommodation period of 30 min was given. Infrared cameras were used to capture the motion. Primary kinematic (knee flexion and pelvic obliquity (PO)) and secondary kinetic (ground reaction force (GRF)) were measured at right heel strike and left heel strike. Functional adaptation was analyzed and the postulated predictor indices (PIs) were used as a screening tool using height, LLD, and TL to notify significance.

    RESULTS: There was a significant knee flexion component seen in height category of less than 170 cm. There was significant difference between LLD 3 cm and 4 cm. No significant changes were seen in PO and GRF. PIs of LLD/height and LLD/TL were analyzed using receiver operating characteristic curve. LLD/height as a PI with value of 1.75 was determined with specificity of 80% and sensitivity of 76%.

    CONCLUSION: A height of less than 170 cm has significant changes in relation to LLD. PI using LLD/height appears to be a promising tool to identify patients at risk.

    Matched MeSH terms: Leg Length Inequality/physiopathology
  2. Fazreena Othman N, Salleh Basaruddin K, Hanafi Mat Som M, Shukry Abdul Majid M, Razak Sulaiman A
    Acta Bioeng Biomech, 2019;21(1):55-62.
    PMID: 31197285
    PURPOSE: The aim of this study was to examine the joint contact forces (JCF) between each limb as the LLD magnitude increases during walking activity.

    METHODS: Eighteen male healthy subjects volunteered to participate in the experiment. Walking gait analysis was conducted with eight different levels of insole to simulate the LLD, starting from 0 cm until 4.0 cm with 0.5 cm increment. Qualisys Track Manager System and C-motion Visual 3D biomechanical tools were used to analyse the results. Four joints (ankle, knee, hip, and pelvis) of lower limb of two legs were investigated. The increment of insoles was placed on the right leg to represent the long leg.

    RESULTS: The results suggest that the mean contact forces for all joints in the short leg were increased as the increment level increased. On the contrary, the mean contact forces in the long leg decreased when the LLD level increased. Among these four joints, JCF in hip shows a positive increment based on the ASI value. Means that hip shows the most affected joint as the LLD level increase.

    CONCLUSIONS: The result obtained in this study might help clinicians treat patients with a structural LLD for treatment plan including surgical intervention.

    Matched MeSH terms: Leg Length Inequality/physiopathology*
  3. Devnani AS
    Singapore Med J, 2000 Nov;41(11):534-7.
    PMID: 11284611
    To describe an appliance used for equalisation of severe congenital lower limb length discrepancy for patients who refuse to undergo any operative correction but wish to walk and look better.
    Matched MeSH terms: Leg Length Inequality/physiopathology
  4. Azizan NA, Basaruddin KS, Salleh AF, Sulaiman AR, Safar MJA, Rusli WMR
    J Healthc Eng, 2018;2018:7815451.
    PMID: 29983905 DOI: 10.1155/2018/7815451
    Balance in the human body's movement is generally associated with different synergistic pathologies. The trunk is supported by one's leg most of the time when walking. A person with poor balance may face limitation when performing their physical activities on a daily basis, and they may be more prone to having risk of fall. The ground reaction forces (GRFs), centre of pressure (COP), and centre of mass (COM) in quite standing posture were often measured for the evaluation of balance. Currently, there is still no experimental evidence or study on leg length discrepancy (LLD) during walking. Analysis of the stability parameters is more representative of the functional activity undergone by the person who has a LLD. Therefore, this study hopes to shed new light on the effects of LLD on the dynamic stability associated with VGRF, COP, and COM during walking. Eighteen healthy subjects were selected among the university population with normal BMIs. Each subject was asked to walk with 1.0 to 2.0 ms-1 of walking speed for three to five trials each. Insoles of 0.5 cm thickness were added, and the thickness of the insoles was subsequently raised until 4 cm and placed under the right foot as we simulated LLD. The captured data obtained from a force plate and motion analysis present Peak VGRF (single-leg stance) and WD (double-leg stance) that showed more forces exerted on the short leg rather than long leg. Obviously, changes occurred on the displacement of COM trajectories in the ML and vertical directions as LLD increased at the whole gait cycle. Displacement of COP trajectories demonstrated that more distribution was on the short leg rather than on the long leg. The root mean square (RMS) of COP-COM distance showed, obviously, changes only in ML direction with the value at 3 cm and 3.5 cm. The cutoff value via receiver operating characteristic (ROC) indicates the significant differences starting at the level 2.5 cm up to 4 cm in long and short legs for both AP and ML directions. The present study performed included all the proposed parameters on the effect of dynamic stability on LLD during walking and thus helps to determine and evaluate the balance pattern.
    Matched MeSH terms: Leg Length Inequality/physiopathology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links